簡易檢索 / 詳目顯示

研究生: 林宜璋
Lin, I-Chang
論文名稱: 不同退火條件之銅導線經放電結球前後之機械性質與織構分析
Effects of EFO Process on Mechanical Properties and Texture of Copper Wire under Different Annealing Treatments
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: 織構銅導線
外文關鍵詞: texture, copper wire
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅線在打線方面的應用有成本低、強度高與導電性佳等優勢,但是於接合基版時延展性不足與容易損壞基版等問題,導致無法有效地用於應用層面;本研究欲了解深抽至ψ=20m的銅線經過不同溫度的真空退火,觀察其線材組織與機械性質的變化,選用退火條件為200℃~300℃,退火時間為1hr;選取再結晶溫度下的線材與深抽後線材進行放電結球,再針對結球後三部分( 結球端、熱影響區與素線材 )分別以EBSD分析其織構,了解退火前後與其經放電結球前後織構的變化。
    實驗結果顯示,隨著退火溫度的上昇,線材之微硬度與拉伸強度下降而延性上升,在退火溫度225℃時達到再結晶溫度,此時線材完全再結晶為等軸晶,延性有較明顯的上昇趨勢,而線材再結晶的織構為 <100> AD,且在微觀組織亦發現退火雙晶的組織,其織構為 <111> AD。結球後的線材由不同位置微硬度值的分布,發現結球區與素線材間有一段熱影響區,由於結球放電高熱的影響導致此區域晶粒粗大,機械性質變差,而且實驗結果發現,結球後拉伸均破斷於此區域內,離結球端約200~300m。
    線材結球後在球內發現有部分未融熔的線材包覆於球中,在球上可以觀察到線材的退火雙晶,此雙晶可能為由頸部延伸至球內之晶粒上的雙晶;深抽後線材之熱影響區晶粒受熱部分再結晶為等軸晶粒,其上也發現退火雙晶的存在,而在深抽後線材之結球區內EBSD解析結果為 <100> AD的織構;在退火後之結球端解析後結果為 <110> AD與<111> AD織構。

    The advantages of copper wire using for wire bonding are lower cost, higher strength , higher electrical conductivity comparing with gold wire.While applying in wire bonding, copper wire has lower ductility and it is too hard to damage the pad.These disadvantages cause copper wire can not be used effectively.We want to realize the microstructure and mechanical properties of the drawn copper wire (ψ=20m ) after different annealing treatments.The annealing treatment temperatures are different from 200℃ to 300℃ , and the annealing time is 1hr.We Choose the drawn and recrystallized wire after EFO ( Electrical Flame Off ) process to analyse texture by EBSD and the analytic sections including the ball、heat affect zone ( HAZ ) and the wire.
    The experiments showed that the higher annealing treatment temperature, the lower microhardness ( Hv ), tensile strength and higher elongation of the wire.The wire could be obtained fully recrystallized at 225℃annealing treatment temperature. The recrystallized copper wire had obviously higher ductility and its texture was <100> //AD.We also observed the annealing twin in the recrystallized copper wire and its texture was <111> // AD.
    According to different positions' microhardness distributions, We find that there was a heat affect zone between the ball and the wire.The grains in the heat affect zone were more coarse with lower mechanical properties due to the high heat during the EFO process. The experiments showed that the HAZ which had lower mechanical properties was about 200~300m away from the ball and the distance was the same as the fracture position of tensile test.
    We found that there were part of un-melted wire in the ball after the EFO process .This was because that we can observe the annealing twin in the ball .The twin was in the grain over the neck and the ball .The grains in HAZ of the drawn wire were partial recrystallized and there were some annealing twins in the section .The EBSD analysis in the ball of the drawn wire was <100> //AD.And the EBSD analysis in the ball of the wire after annealing was <110> // AD and <111> //AD.

    中文摘要...........................................................I 英文摘要..........................................................II 誌謝..............................................................IV 總目錄............................................................V 表目錄..........................................................VIII 圖目錄...........................................................IX 第一章 前言...............................................1 第二章 文獻回顧...........................................2 2-1 打線接合技術.........................................2 2-1-1 打線接合方法與接合方式............................2 2-2 背向散射電子繞射分析............................2 2-2-1 Introduction.........................................2 2-2-2 背向電子繞射實驗之應用............................3 2-3 織構表示方式.........................................3 2-4 純銅深抽過程織構變化.................................4 2-5 純銅再結晶後之織構變化...............................4 2-6 實驗目的.............................................4 第三章 實驗步驟與方法...................................8 3-1 實驗材料............................................8 3-2 真空退火熱處理.......................................8 3-3 放電結球............................................8 3-4 微觀組織的觀察.......................................8 3-5 微硬度測試.......................................9 3-6 拉伸試驗............................................9 3-7 背向散射電子繞射( EBSD )分析.........................10 3-7-1 試片製作方式.....................................10 3-7-2 EBSD分析.........................................10 第四章 實驗結果..........................................19 4-1 不同退火條件下微觀組織的觀察........................19 4-1-1 不同退火條件之線材的微觀組織....................19 4-1-2 不同退火條件之線材經放電結球後之微觀組織........19 4-2 退火對微硬度的影響..................................20 4-2-1 線材微硬度之測試結果............................20 4-2-2 線材經放電結球後微硬度之測試結果................20 4-3 退火對機械性質的影響................................20 4-3-1 線材拉伸測試的結果..............................20 4-3-2 退火線材經放電结球後之拉伸測試的結果............21 4-4 退火前後EBSD的分析.................................21 4-4-1 退火前後線材之EBSD分析..........................21 4-4-2 退火前後線材經放電結球後其熱影響區之EBSD分析..21 4-4-3 退火前後線材其結球後球部之EBSD分析..............22 第五章 討論............................................52 5-1 退火前後線材之微觀組織與織構的探討..................52 5-2 線材其放電結球後不同部位之微觀組織的探討............52 5-3 線材經放電結球後結球端之組織與織構的探討............53 5-3-1 柱狀晶成核成長...................................53 5-3-2 柱狀晶晶粒數與晶粒大小探討.......................53 5-4 退火後線材其放電結球後織構與機械性質關係探討........53 5-5 線材其放電結球後之拉伸破斷位置之探討................54 第六章 結論..............................................62 參考文獻.................................................63 表目錄 表3-1 線徑20 m銅線之ICP成分分析........................11 圖目錄 圖2-1 EBSD操作示意圖.....................................6 圖2-2 反極圖原理示意圖....................................7 圖3-1 放電結球過程及其保護氣體裝置.......................12 圖 3-2 線材微硬度量測示意圖.......................13 圖 3-3放電結球後微硬度量測示意圖.......................13 圖 3-4放電結球後拉伸示意圖.......................14 圖3-5 EBSD試片擷取位置圖.......................15 圖 3-6 EBSD試片擷取圖: (a)線材之FIB試片擷取圖 , (b) 熱影響區之FIB試片擷取........16 圖3-6 EBSD試片擷取圖: (c)球部之FIB試片擷取圖...................................17 圖3-7 反極圖color key.....................................18 圖4-1 不同溫度真空退火之線材組織 (OM): (a) 深抽後, (b) 200℃,(c) 225℃..............................23 圖4-1 不同溫度真空退火之線材組織 (OM): (d) 250℃, (e) 275℃, (f) 300℃................................24 圖4-2 退火前後線材之橫截面( SEM ): (a) 深抽後 , (b) 退火溫度225℃.............................25 圖4-3 深抽後之線材其結球微觀組織 (OM): (a) 球部及頸部區 , (b) 頸部及線材端........................26 圖4-4 退火溫度225℃之線材其結球微觀組織 (OM) : (a) 球部及頸部區 , (b) 頸部及線材端........................27 圖4-5 不同退火溫度線材之微硬度...........................28 圖4-6 退火前後之線材其結球後之微硬度分布圖: (a) 深抽後 , (b) 退火溫度225℃.............................29 圖4-7 不同退火溫度線材之UTS分布圖.......................30 圖4-8 不同退火溫度線材之El分布圖.........................31 圖4-9 退火溫度225℃之線材其結球前後機械性質: (a) UTS , (b) El............................................32 圖4-10 结球後拉伸之破斷圖: (a) 深抽後之線材結球 , (b) 退火溫度225℃之線材結球.........33 圖4-11 深抽後線材之 Mapping Pattern: (a) AD, (b) TD , (c) RD......................................34 圖4-12深抽後線材之極圖: (a) {100}面, (b) {110}面, (c) {111}面..........................35 圖4-13 深抽後線材之反極圖: (a)AD, (b) TD , (c) RD......................................36 圖4-14 退火後線材之 Mapping Pattern: (a) AD, (b) TD , (c)RD......................................37 圖4-15 退火後線材之極圖: (a) {100}面, (b) {110}面, (c) {111}面..........................38 圖4-16 退火後線材之反極圖: (a) AD, (b) TD , (c) RD......................................39 圖4-17 深抽後線材其結球後頸部之 Mapping Pattern: (a) AD, (b) TD , (c) RD......................................40 圖4-18 深抽後線材其結球後頸部之極圖: (a) {100}面, (b) {110}面, (c) {111}面..........................41 圖4-19 深抽後線材其結球後頸部之反極圖: (a) AD, (b) TD , (c) RD......................................42 圖4-20退火後線材其結球後頸部之 Mapping Pattern: (a) AD, (b) TD , (c) RD......................................43 圖4-21 退火後線材其結球後頸部之極圖: (a) {100}面, (b) {110}面, (c) {111}面..........................44 圖4-22 退火後線材其結球後頸部之反極圖: (a) AD, (b) TD , (c) RD......................................45 圖4-23 深抽後線材其結球後球部之 Mapping Pattern: (a) AD, (b) TD , (c) RD......................................46 圖4-23 深抽後線材其結球後球部之極圖: (a) {100}面, (b) {110}面, (c) {111}面..........................47 圖4-24 深抽後線材其結球後球部之反極圖: (a) AD, (b) TD , (c) RD......................................48 圖4-25 退火後線材其結球後球部之 Mapping Pattern: (a) AD, (b) TD , (c) RD......................................49 圖4-26 退火後線材其結球後球部之極圖: (a) {100}面, (b) {110}面, (c) {111}面..........................50 圖4-27 退火後線材其結球後球部之反極圖: (a) AD, (b) TD , (c) RD......................................51 圖5-1 深抽後線材經結球各個位置之微觀組織 ( SEM ) : (a) 結球端, (b) 距球端約100m處...........................55 圖5-1 深抽後線材經結球各個位置之微觀組織 ( SEM ): (c) 距球端約200m處, (d) 距球端約300m處.................56 圖5-1 深抽後線材經結球各個位置之微觀組織 ( SEM ) : (e) 距球端約400m處, (f) 距球端約500m處.................57 圖5-2 退火溫度225℃之線材其結球微觀組織 ( Ion Beam ): (a) 球部及頸部區, (b) 頸部及熱影響區.......................58 圖5-3 柱狀晶成核成長示意圖...............................59 圖5-4 熱傳導方向示意圖...................................60 圖5-5 退火後線材結球前後AD面之微硬度值..................61

    1、F. Wullf, C. D. Breach and K. Dittmer,“Crystallographic Texture of Drawn Gold Bonding Wires Using Electron Backscattered Diffraction ( EBSD )”, J. Mater. Sci. Lett. , 22 ( 2003 ), pp. 1373-1376.
    2、H. M. Ho, W. Lam, S. Stoukatch, P. Ratchev, Charles J. Vath III and E. Beyne,“Direct gold and copper wires bonding on copper”, Microelectronics Reliability 43 ( 2003 ) 913–923.
    3、S. Murali, N. Srikanth and Charles J. Vath III,“Grains, Defrmation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding”, Mater. Charact. 50 ( 2003 ), pp. 39-50.
    4、G. Harman, Wire Bonding in Microelectronics Materials, Processes , Reliability, and Yield , McGraw-Hill, New York, 1997, pp. 1-11.
    5、http://pi;ot.mse.nthu.edu.tw/micro/chap9/ch9-3.htm.
    6、陳昭亮,張眗揚,〝密集角距封裝之金線結球參數分析研究〞,興
    大工程學刊,第十二卷,第二期(民國九十年),127-141頁。
    7、Inderjit Singh, Sr. Assembly, J.Y., Lee Levine, Sr. ,“Hancing Fine Pitch, High I/O Devices with Copper Ball Bonding”, 2005Electronic
    Components and Technology Conference.
    8、http://www.ebsd.com/ebsdexplained.htm- EBSD experiment.
    9、周詩博,〝冷軋鋁箔之再結晶組織與機械性質〞,國立中山大學材
    料科學與工程研究所碩士論文,民國91年。
    10、Krishna Rajan, Ronald Petkie,“Microtexture and anisotropy in wire
    drawn copper”, Materials Science and Engineering A257 ( 1998 )
    185-197.
    11、R . N . Wright,“Texture Development in Copper Wire”, Wire Joumal
    Intemational, pp.7o-73, April 1997.
    12、Krishna Rajan and Ronald Petkie ,“Microtexture Anisotropy in Wire Drawll Copper”, Materials Science EngineeringA, vol.A257, No.l , pp . 185-197, 1998.
    13、H . Park and D . N . Lee ,“Effects of Shear Strain and Drawing Pass on The Texture Development in Copper Wire”, Materials Science Forum, Vol . 408-412, No . l , pp . 637-642, 2002.
    14、M. Ferry, F.J. Humphreys,“Onset of abnormal subgrain growth in
    cold rolled {1 1 0}<0 0 1>oriented copper single crystals”, Materials
    Science and Engineering A 435–436 ( 2006 ) 447–452.
    15、王元亭,〝放電結球細微銅導線抗拉強度之韋伯解析研究〞,國立
    成功大學材料科學與工程研究所碩士論文,民國94年。
    16、李志中,〝線上熱處理銅導線經放電結球前後之微觀組織及拉伸
    性質探討〞,國立成功大學材料科學與工程研究所碩士論文,民
    國95年。
    17、O. V. Mishin, G. Gottstein,“Grain boundary ensembles due to grain
    growth in copper with strong recrystallization texture”, Materials
    Science and Engineering A 249 ( 1998 ) 71-78.
    18、D.P. Field, B.W. True, T.M. Lillo, J.E. Flinn,“Observation of twin boundary migration in copper during deformation”, Materials Science and Engineering A 372 ( 2004 ) 173–179.
    19、Jae-Hyung Cho, A.D. Rollett, J.-S. Cho, Y.-J. Park, S.-H. Park, K.H. Oh,“Investigation on cold-drawn gold bonding wire with serial and reverse-direction drawing”, Materials Science and Engineering A 432 ( 2006 ) 202–215.
    20、Jae-Hyung Cho, J.S. Cho, J.T. Moon, J. Lee, Y.H. Cho, A.D. Rollett and K.H. Oh,“Recrystallization and Grain Growth of Gold bonding Wire.”

    下載圖示 校內:立即公開
    校外:2007-07-06公開
    QR CODE