| 研究生: |
林宜璋 Lin, I-Chang |
|---|---|
| 論文名稱: |
不同退火條件之銅導線經放電結球前後之機械性質與織構分析 Effects of EFO Process on Mechanical Properties and Texture of Copper Wire under Different Annealing Treatments |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 織構 、銅導線 |
| 外文關鍵詞: | texture, copper wire |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銅線在打線方面的應用有成本低、強度高與導電性佳等優勢,但是於接合基版時延展性不足與容易損壞基版等問題,導致無法有效地用於應用層面;本研究欲了解深抽至ψ=20m的銅線經過不同溫度的真空退火,觀察其線材組織與機械性質的變化,選用退火條件為200℃~300℃,退火時間為1hr;選取再結晶溫度下的線材與深抽後線材進行放電結球,再針對結球後三部分( 結球端、熱影響區與素線材 )分別以EBSD分析其織構,了解退火前後與其經放電結球前後織構的變化。
實驗結果顯示,隨著退火溫度的上昇,線材之微硬度與拉伸強度下降而延性上升,在退火溫度225℃時達到再結晶溫度,此時線材完全再結晶為等軸晶,延性有較明顯的上昇趨勢,而線材再結晶的織構為 <100> AD,且在微觀組織亦發現退火雙晶的組織,其織構為 <111> AD。結球後的線材由不同位置微硬度值的分布,發現結球區與素線材間有一段熱影響區,由於結球放電高熱的影響導致此區域晶粒粗大,機械性質變差,而且實驗結果發現,結球後拉伸均破斷於此區域內,離結球端約200~300m。
線材結球後在球內發現有部分未融熔的線材包覆於球中,在球上可以觀察到線材的退火雙晶,此雙晶可能為由頸部延伸至球內之晶粒上的雙晶;深抽後線材之熱影響區晶粒受熱部分再結晶為等軸晶粒,其上也發現退火雙晶的存在,而在深抽後線材之結球區內EBSD解析結果為 <100> AD的織構;在退火後之結球端解析後結果為 <110> AD與<111> AD織構。
The advantages of copper wire using for wire bonding are lower cost, higher strength , higher electrical conductivity comparing with gold wire.While applying in wire bonding, copper wire has lower ductility and it is too hard to damage the pad.These disadvantages cause copper wire can not be used effectively.We want to realize the microstructure and mechanical properties of the drawn copper wire (ψ=20m ) after different annealing treatments.The annealing treatment temperatures are different from 200℃ to 300℃ , and the annealing time is 1hr.We Choose the drawn and recrystallized wire after EFO ( Electrical Flame Off ) process to analyse texture by EBSD and the analytic sections including the ball、heat affect zone ( HAZ ) and the wire.
The experiments showed that the higher annealing treatment temperature, the lower microhardness ( Hv ), tensile strength and higher elongation of the wire.The wire could be obtained fully recrystallized at 225℃annealing treatment temperature. The recrystallized copper wire had obviously higher ductility and its texture was <100> //AD.We also observed the annealing twin in the recrystallized copper wire and its texture was <111> // AD.
According to different positions' microhardness distributions, We find that there was a heat affect zone between the ball and the wire.The grains in the heat affect zone were more coarse with lower mechanical properties due to the high heat during the EFO process. The experiments showed that the HAZ which had lower mechanical properties was about 200~300m away from the ball and the distance was the same as the fracture position of tensile test.
We found that there were part of un-melted wire in the ball after the EFO process .This was because that we can observe the annealing twin in the ball .The twin was in the grain over the neck and the ball .The grains in HAZ of the drawn wire were partial recrystallized and there were some annealing twins in the section .The EBSD analysis in the ball of the drawn wire was <100> //AD.And the EBSD analysis in the ball of the wire after annealing was <110> // AD and <111> //AD.
1、F. Wullf, C. D. Breach and K. Dittmer,“Crystallographic Texture of Drawn Gold Bonding Wires Using Electron Backscattered Diffraction ( EBSD )”, J. Mater. Sci. Lett. , 22 ( 2003 ), pp. 1373-1376.
2、H. M. Ho, W. Lam, S. Stoukatch, P. Ratchev, Charles J. Vath III and E. Beyne,“Direct gold and copper wires bonding on copper”, Microelectronics Reliability 43 ( 2003 ) 913–923.
3、S. Murali, N. Srikanth and Charles J. Vath III,“Grains, Defrmation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding”, Mater. Charact. 50 ( 2003 ), pp. 39-50.
4、G. Harman, Wire Bonding in Microelectronics Materials, Processes , Reliability, and Yield , McGraw-Hill, New York, 1997, pp. 1-11.
5、http://pi;ot.mse.nthu.edu.tw/micro/chap9/ch9-3.htm.
6、陳昭亮,張眗揚,〝密集角距封裝之金線結球參數分析研究〞,興
大工程學刊,第十二卷,第二期(民國九十年),127-141頁。
7、Inderjit Singh, Sr. Assembly, J.Y., Lee Levine, Sr. ,“Hancing Fine Pitch, High I/O Devices with Copper Ball Bonding”, 2005Electronic
Components and Technology Conference.
8、http://www.ebsd.com/ebsdexplained.htm- EBSD experiment.
9、周詩博,〝冷軋鋁箔之再結晶組織與機械性質〞,國立中山大學材
料科學與工程研究所碩士論文,民國91年。
10、Krishna Rajan, Ronald Petkie,“Microtexture and anisotropy in wire
drawn copper”, Materials Science and Engineering A257 ( 1998 )
185-197.
11、R . N . Wright,“Texture Development in Copper Wire”, Wire Joumal
Intemational, pp.7o-73, April 1997.
12、Krishna Rajan and Ronald Petkie ,“Microtexture Anisotropy in Wire Drawll Copper”, Materials Science EngineeringA, vol.A257, No.l , pp . 185-197, 1998.
13、H . Park and D . N . Lee ,“Effects of Shear Strain and Drawing Pass on The Texture Development in Copper Wire”, Materials Science Forum, Vol . 408-412, No . l , pp . 637-642, 2002.
14、M. Ferry, F.J. Humphreys,“Onset of abnormal subgrain growth in
cold rolled {1 1 0}<0 0 1>oriented copper single crystals”, Materials
Science and Engineering A 435–436 ( 2006 ) 447–452.
15、王元亭,〝放電結球細微銅導線抗拉強度之韋伯解析研究〞,國立
成功大學材料科學與工程研究所碩士論文,民國94年。
16、李志中,〝線上熱處理銅導線經放電結球前後之微觀組織及拉伸
性質探討〞,國立成功大學材料科學與工程研究所碩士論文,民
國95年。
17、O. V. Mishin, G. Gottstein,“Grain boundary ensembles due to grain
growth in copper with strong recrystallization texture”, Materials
Science and Engineering A 249 ( 1998 ) 71-78.
18、D.P. Field, B.W. True, T.M. Lillo, J.E. Flinn,“Observation of twin boundary migration in copper during deformation”, Materials Science and Engineering A 372 ( 2004 ) 173–179.
19、Jae-Hyung Cho, A.D. Rollett, J.-S. Cho, Y.-J. Park, S.-H. Park, K.H. Oh,“Investigation on cold-drawn gold bonding wire with serial and reverse-direction drawing”, Materials Science and Engineering A 432 ( 2006 ) 202–215.
20、Jae-Hyung Cho, J.S. Cho, J.T. Moon, J. Lee, Y.H. Cho, A.D. Rollett and K.H. Oh,“Recrystallization and Grain Growth of Gold bonding Wire.”