| 研究生: |
吳志偉 Wu, Jhih-Wei |
|---|---|
| 論文名稱: |
以超臨界二氧化碳進行蘇丹染料染天然纖維方法之開發 Development of the Dyeing Method for Sudan dye on Natural Fibers in Super critical Fluid CO2 |
| 指導教授: |
桂椿雄
Kuei, Chun-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 超臨界流體染色 、蘇丹一 、色彩(色差)光譜檢測儀 |
| 外文關鍵詞: | supercritical fluid dyeing, Sudan I, Color (color difference) spectral detector |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染色工業中,廢水對環境造成了嚴重的污染,因此人們在尋找一種新的方法。近年來,超臨界流體染色備受青睞,這種方法可以徹底改善水汙染問題。本文對超臨界二氧化碳染色使用一種紅色染料(Sudan I)做為方法建立的測試。此實驗在靜態和動態兩種染色方法中,分別分析溫度、壓力和時間以及布料材質對染色結果(上色值,均勻度,水洗強度)造成的影響,進而選擇最佳的染色條件。
實驗結果顯示,在靜態染色的方式中,發現染色40分鐘,兩種材質的布料皆可達染色平衡。在棉布的情況,上色效果隨著溫度的升高和壓力的降低而有較高的上色效果,而隨著溫度和壓力的升高而有較好的均勻度;絲布的情況,上色效果和均勻度皆是隨著溫度和壓力的上升而增加。且可以明顯看出溫度對上色效果的影響要比壓力的影響顯著。然而表現在染色水洗牢度上卻是不夠的。
而在動態染色的方法中,兩種材質的布料皆會因為染色時間過長而導致上色效果更差,因此選擇一個上色效果達最大值的時間,45分鐘。而在上色效果的部分,不論是在絲布還是綿布,都有和上述靜態相同的趨勢,只是在上色值(L*a*b*值)都不及靜態染色,卻有相對於靜態而言較好的均勻度和水洗強度。綜合兩種結果,我們選擇靜態的染色方法,並利用無水的後處理方法,有效改善靜態染色中較不足的水洗強度。測試結果中,最適宜的染色條件為壓力4500psi、溫度100℃和時間40分鐘。並將之與有機溶劑染色結果進行比較,結果比有機溶劑染色在染色結果的表現上都較好,且省時,並在較低濃度即有較好上色效果。結果表明,儘管是在棉布或絲布這種結構比較親水性的質料,在超臨界流體染色方法中,選擇適合的染料亦可獲得滿意的結果。
The use of water in dyeing processes causes environmental problems. For this reason, replacing water with non-aqueous media that has been developed for the dyeing processes. In recent years, supercritical fluid dyeing has been paid more attention. This method can completely reduce water pollution. In this study, the red dye (Sudan I) was employed as a testing pigment for establishing the supercritical fluid dyeing method. The method can be classified as static and dynamic types. The factors of temperature, pressure, time, and the fabric material were tested in these two types of method to select the appropriate staining conditions. The impact of dye uptake (Lab value), uniformity and washing fastness were also estimated as the basis in this research.
Experimental results show that the two materials are can be found a suitable equilibration time of fabric dyeing-40 minutes in the static dyeing method. In the case of cotton, dye uptake raised with the increasing temperature and lowering pressure. With the rise of temperature and pressure, the uniformity got better. In the case of silk, both dye uptake and uniformity raised with the increasing of temperature and pressure. Obviously, the effect of temperature on the dye uptake is more significant than the pressure. However, the increasing of temperature is inadequate for promoting washing fastness in the static dyeing method.
In the dynamic dyeing method, the dyeing time may be too long to cause dye uptake become worse. The use of a suitable time is 45 minutes while the dye uptake reached its maximum value. Either in the silk or cotton fabric has the same trend in dye uptake with static method. But the results were lower than static method. However, dynamic method provided the better uniformity and washing fastness.
After integrating two results, we chose the static dyeing method and used anhydrous post-processing method to effectively improve the insufficient washing fastness. Form the study results, the most suitable dyeing conditions are the pressure is 4500 psi, the temperature is 100℃ and the time is 40 minutes. Compared the results with that staining with an organic solvent, the performance of the dyeing with supercritical CO2 is better. Not only in saving time but also obtaining better results at lower dye concentration.
The results show that, in spite of such a structure in a cotton or silk those are relatively hydrophilic material, in the supercritical fluid dyeing method. We can select the appropriate dyes and get satisfactory results.
[1]是偉元, 對印染企業清潔生產的思考與實踐, 印染, No.6, 5-7, 2000.
[2]周渭濤, 染整工業節水創新工業總述, 印染, No.12, 44 -50, 2000.
[3]M. Rita De Giorgi, E. Cadoni, D. Maricca, Alessandra Piras, Dyeing polyester fibres with disperse dyes in supercritical CO2, Dyes and Pigments, 45, 75-79, 2000.
[4]A. Safa Özcan, Adnan Özcan, Adsorption behavior of a disperse dye on polyester in supercritical carbon dioxide, J. of Supercritical Fluids, 35, 133-139, 2005.
[5]A. Ferri, M. Banchero, L. Manna, S. Sicardi, Dye uptake and partition ratio of disperse dyes between a PET yarn and supercritical carbon dioxide, J. of Supercritical Fluids, 37, 107-114, 2006.
[6]A. S. Özcan, A. A. Clifford, K. D. Bartle, D. M. Lewis, Dyeing of Cotton Fibres with Disperse Dyes in Supercritical, Dyes and Pigments, 36, 2, 103-110, 1998.
[7]P. L. Beltrame, A. Castelli, E. Selli, A. Mossa, G. Testa, A. M. Bonfatti, A. Seves, Dyeing of Cotton in Supercritical Carbon Dioxide, Dyes and Pigments, 39, 4, 335-340, 1998.
[8]B. Gebert, W. Saus, D. Knittel, H. Buschmann, E. Schollmeyer, Dyeing Natural Fibers with Disperse Dyes in Supercritical Carbon Dioxide, Textile Res., 64, 7, 371-374, 1994.
[9]Y. Xiong, E. Kiran, Miscibility, density and viscosity of poly(dimethylsiloxane) in supercritical carbon dioxide, Polymer, 36, 25, 4817-4826, 1995.
[10]A. K. Chaudhary, E. J. Beckman, A. J. Russell, Rational control of polymer molecular weight and dispersity during enzyme-catalyzed polyester syntheses in supercritical fluids, J. Am. Chem. Soc., 117, 3728-3733, 1995.
[11]S. K. Goel, E. J. Beckman, Plasticization lf poly(methylmethacrylate) (PMMA) networks by supercritical carbon dioxide, Polymer, 34, 7, 1410-1417, 1993.
[12]M. E. Paulaitis, G. C. Alexander, Reactions in supercritical fluids. a case study of the thermodynamic solvent effects on a Diels-Alder reaction in supercritical carbon dioxide, Pure. Appl. Chem., 59, 1, 61-68, 1987.
[13]W. Saus, D. Knittel, E. Schollmeyer, Dyeing of Textiles in Supercritical Carbon Dioxide, Textile Res., 63, 3, 135-142,1993.
[14]R. Koningsveld, G. A. M. Diepen, Supercritical Phase Equilibria Involving Solids, Fluid Phase Equilibria, 10:159-172, 1983.
[15]J.H. Jun, K. Sawada, M. Ueda, Application of Perfluoropolyether Reverse Micelles in Supercritical CO2 to Dyeing Process, Dyes and Pigments, 61, 1,17-22, 2004.
[16]Adobe, 使用ADOBE PHOTOSHOP CS4說明書, p113, .
[17]洪國敦, 色域映對理論應用於顯示器色彩調校之研究, 國立中 央大學光電科學研究所碩士論文, p25, 2006.
[18]G . Sharma, Digital Color Imaging Handbook, CRC Press, 1.7.2 ed, p30-32, 2003.
[19]Y. Yamini, M. Moradi, et al, Solubilities of Some Disperse Yellow Dyes in Supercritical CO2, J. Chem, 55, 3896–3900, 2010.
[20]S.L. Draper, G.A. Montero, et al, Solubility relationships for disperse dyes in supercritical carbon dioxide, Dyes and Pigments, 45, 177-183, 2000.
[21]R. Tabaraki, T. Khayamian, A.A. Ensafi, Solubility prediction of 21 azo dyes in supercritical carbon dioxide using wavelet neural network, Dyes and Pigments, 73, 230-238, 2007.