簡易檢索 / 詳目顯示

研究生: 陳慕辰
Chen, Mu-Chen
論文名稱: 直接甲醇燃料電池陰陽兩極阻抗分析
Impedance Analysis for Anode and Cathode of Direct Methanol Fuel Cell
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 192
中文關鍵詞: 阻抗分析直接甲醇燃料電池甲醇滲透現象
外文關鍵詞: DMFC, methanol crossover, AC impedance
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    以甲醇為原料之直接甲醇燃料電池存在嚴重的甲醇滲透問題,不
    但造成甲醇燃料的流失,亦會與氧氣形成混成電位(mixed potential)
    降低陰極電位使電池效能變差。本研究以含浸法製備Pt/C 作為陰極
    觸媒,Pt-Ru/C 作為陽極觸媒,在不同的進料濃度、溫度、流速及電
    池溫度進行放電測試,以氫參考電極、陰極、陽極形成三極式系統作
    放電極化曲線及交流阻抗分析,分別以陰陽兩極的角度探討操作條件
    對甲醇滲透及電池效能的影響。
    本研究氫參考電極設計在操作條件下不存在甲醇滲透對參考電
    極的影響,可長時間維持穩定與可靠性。三極式有別於一般二極式系
    統僅可得到兩極阻抗值的總和,對陰陽兩極分別探討更可了解阻抗的
    研究發現,進料甲醇濃度對甲醇滲透的影響甚鉅,陰極電位隨著
    甲醇濃度的上升而明顯下降。陽極電位明顯上升,推測和甲醇氧化的
    中間物一氧化碳的吸附性質有關。
    除了操作條件外,擴散層對電池效能也有影響。擴散層的疏水性
    可以幫助陽極二氧化碳的排除及陰極水分的排除,但疏水性材質較不
    導電,會增加電池的內電阻,因此在擴散層的選擇上必須取決於膜電
    II
    極組的特性、系統特性以及操作條件。對本系統而言,由於陰極的氧
    氣無增濕,在大電流下亦不會產生泛溢現象,因此陰極採非疏水性材
    質,陽極採疏水性材質時可得到最佳的效能。
    甲醇進料溫度升高到60oC 對陽極效能的提升非常有幫助,推測甲
    醇在此溫度以上活性大增,有助於氧化反應的進行。甲醇流速越高,
    對一氧化碳排除的效果越好,電極表面不受二氧化碳覆蓋時甲醇的質
    傳顯得容易,陽極效能隨之上升。

    Abstract
    One of the most serious problems of direct methanol fuel cell
    (DMFC) is methanol crossover. The methanol permeability through the
    membrane not only loses the fuel of methanol but also decreases the cell
    potential due to mixed potential of cathode with oxygen. This research
    used the impregnation method to prepare Pt/C as cathode catalyst,
    Pt-Ru/C as anode catalyst. The discharging test of the cell was operated at
    different concentrations, temperatures, flow rates of the fuel and the cell
    temperature. Hydrogen reference electrode、cathode electrode、anode
    electrode were applied in the three-electrode mode system to obtain the
    discharging polarization curve and AC impedance analysis. The effects of
    operating condition on the methanol permeation and cell performance
    were investigated from the points of view of anode and cathode.
    This research has fabricated a hydrogen reference electrode with
    good stability and reliability. The inference from the methanol
    permeation to the reference electrode can be neglected in 12-hour
    operation. Three-electrode mode system is better than two-electrode
    mode system was the sum of those on two electrodes and three-electrode
    mode system can separate the anode impedance and cathode impedance.
    In this study, the methanol permeation was strongly affected by the
    methanol concentration. Cathode potential decrease if methanol
    concentration increased. Anode potential increase with methanol
    IV
    concentration probably caused by different kinds of (CO)ads on the
    electrode.
    Beside the operating condition, the type of diffusion layer also
    effected for the cell performance. The hydrophobic property of diffusion
    layer can help expulsing carbon dioxide from the anode side and water
    from the cathode side. But hydrophobic property degraded conductivity
    and hence increased the inner resistance of fuel cell. In this system,
    oxygen in cathode side was not humidified, no flooding on the electrode
    happened even at high current density. Therefore, the best performance
    was obtained when the diffusion layers were hydrophilic at cathode and
    hydrophobic at anode.
    Higher temperature of methanol than 60oC can be much helpful to
    improve the anode performance. Increase in the temperature increase the
    methanol activity significantly and helped the process of oxidation
    reaction. The higher methanol flow rate, the better carbon dioxide
    expulsing. When the coverage of carbon dioxide on the electrode
    decrease, the mass transfer of methanol across the diffusion layer was
    easier and the anode performance improved.

    目錄 中文摘要…………………………………………………………………Ⅰ 英文摘要………………………………………...……………………….Ⅲ 致謝………………………………………………………………………Ⅴ 圖目錄……………………………………………………………………Ⅹ 表目錄…………………………………………………...…………….ⅩⅥ 第一章緒論 1.1 燃料電池簡介-----------------------------------------------------------------1 1.1.1 燃料電池特點------------------------------------------------------1 1.1.2 燃料電池種類------------------------------------------------------3 1.1.3 全球及台灣大陸在燃料電池的發展---------------------------6 1.2 直接甲醇燃料電池-----------------------------------------------------------8 1.2.1 甲醇進料方式---------------------------------------------9 1.2.2 甲醇滲透現象(Methanol Crossover)--------------------9 1 . 2 . 3 質子交換膜- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 2 1.2.3.1 Nafion®質子交換膜簡介- - - - - - - - - - - - - - - -- - - - - - - - - 1 2 1 . 2 . 3 .2 Nafion®的改質- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 2 1 . 2 . 3 . 3 其他複合材料薄膜- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 4 1.2.4 陽極觸媒材料------------------------------------------------------------15 1 .2 .4.1 Pt-Ru/C 合金觸媒- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 5 1 . 2 . 4 . 2 合金觸媒- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 6 1.2.5 Pt-Ru/C 或Pt-M/C 合金觸媒製備----------------------------------16 1.2.5.1 膠體法(colloid method)----------------------------16 1.2.5.2 微乳化法(microemulsion method)------------------17 1 . 2 . 5 . 3 含浸法(impregnation method) - - - - - - - - - - - - - - - - - 1 7 1.2.6 擴散層(diffusion layer)------------------------------------------------18 VII 1.2.7 膜電極組-------------------------------------------19 1.2.7.1 三合一式膜電極組---------------------------------------------------19 1.2.7.2 五合一式膜電極組--------------------------------------------------20 1.3 研究動機與目的-----------------------------------------------------------21 第二章原理 2.1 燃料電池構造及電極內部輸送現象-----------------------------------29 2.2 甲醇氧化機制探討--------------------------------------------------------30 2.3 參考電極之應用-----------------------------------------------------------33 2.4 電池放電的極化現象-----------------------------------------------------38 2.4.1 活性過電壓---------------------------------------------------------39 2.4.2 歐姆過電壓----------------------------------------------------------40 2.4.3 質傳過電壓----------------------------------------------------------40 2.5 交流組抗分析--------------------------------------------------------------43 2.5.1 交流組抗分析原理--------------------------------------------------43 2.5.2 一般電化學系統之交流阻抗分析--------------------------------47 2.5.3 交流阻抗分析中之電感現象(inductives effects)與負的電阻值---------3 2.5.4 燃料電池放電之阻抗分析-----------------------------------------55 2.5.5 陽極之Nyquist 圖低頻下之電感現象---------------------------63 2.5.6 甲醇/水溶液之phase diagram-----------------------------------68 第三章實驗設備與步驟 3.1 藥品與材料------------------------------------------------------------------73 3.2 儀器設備--------------------------------------------------------------------74 3.3 Nafion®的前處理----------------------------------------------------------76 3.4 膜電極組的製備------------------------------------------------------------76 3.4.1 Pt/C 與Pt-Ru/C 觸媒製備---------------------------------76 VIII 3.4.2 電極漿料及氣體擴散電極之製備-----------------------77 3.4.3 熱壓法製備膜電極組---------------------------------------78 3.5 電池放電測試--------------------------------------------------------------79 3 . 5 . 1 單電池組裝- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 9 3 . 5 . 2 放電測試系統組裝- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 9 3.6 交流組抗分析--------------------------------------------------------------80 3.7 觸媒與電極特性分析-----------------------------------------------------82 3.7.1 穿透式電子顯微鏡(TEM)分析-------------------------82 3.7.2 X 光繞射分析(XRD)-----------------------------------82 3.7.3 能譜儀分析(EDS)------------------------------------82 3.7.4 掃瞄式電子顯微鏡(SEM)--------------------------------82 第四章結果與討論 4.1 氫參考電極穩性性測試--------------------------------------------------91 4.1.1 氫參考電極內溶液是否與電池本體內溶液相互污染測試---91 4.1.2 氫參考電極vs. Ag/AgCl 參考電極-----------------------------94 4.2 觸媒特性分析--------------------------------------------------------------96 4.2.1 能譜儀分析分析(EDS)-----------------------------------96 4.2.2 X 光繞射分析(XRD)------------------------------------------98 4.2.3 穿透式顯微鏡分析(TEM)--------------------------------------101 4.3 電極結構分析-------------------------------------------------------------103 4.4 電池放電效能分析與交流阻抗分析----------------------------------105 4.4.1 膜電極組的活化--------------------------------------113 4.4.2 膜電極組放電效能再現性確認-----------------------117 4.4.3 甲醇進料濃度影響------------------------------------119 4.4.4 電池本體溫度影響--------------------------------------138 4.4.5 電位與陽極阻抗-------------------------------------142 4 . 4 . 6 阻抗與電流的關係- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 4 5 4.4.7 電池在大電流、長時間操作後的阻抗分析----------148 4.4.8 甲醇進料溫度影響----------------------------------------------------151 4.4.9 甲醇流速影響----------------------------------------------153 4.4.10 氧氣流速的影響--------------------------------------155 4 . 4 . 11 擴散層親疏水性的影響- - - - - - - - - - - - - - - - - - - - - - - - - 1 5 8 4.4.11.1 陽極碳布親疏水性比較--------------------------158 4.4.11.2 陽極碳紙親疏水性比較--------------------------158 4.4.11.3 陰極擴散層材料比較------------------------------159 4 . 4 .1 2 電流對甲醇滲透率的影響- - - - - - - - - - - - - - - - - - - - - 1 6 4 4 . 4 . 1 3 電流對陰極阻抗的影響- - - - - - - - - - - - - - - - - - - - - - - - - 1 68 4 . 5 極化曲線與交流阻抗分析之比較- - - - - - - - - - - - - - - - - - - - - 1 7 3 第五章結論-----------------------------------------------------------------175 參考文獻------------------------------------------------------------------------177 自述-----------------------------------------------------------------191

    參考文獻
    1. J. Giner and C. Hunter, “Model of a Hydrogen-Air Fuel Cell with
    Alkaline Electrolyte”, J. Electrochem. Soc., Vol. 116, p. 1124, (1969.)
    2. 鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,
    第二十五卷第四期。161 頁,(1995)。
    3. O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric
    Acid Fuel Cells (PAFC)”, J. Appl. Electrochem. , vol. 22, p. 995
    (1992)
    4. E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan,
    “Methods to Advance Technology of Proton Exchange Membrane
    Fuel Cells ” J. Electrochemical. Soc., vol. 135, p.2209(1998) 。
    5. 李國霖,熔融碳酸鹽燃料電池的研發,能源季刊,第二十四卷第
    四期,57 頁,(1997)。
    6. K. Scott, W.M. Taama, P. Argyropoulos, “Engineering Aspects of the
    Direct Methanol Fuel Cell System”, J. Power Sources, vol. 79, p. 43,
    (1999).
    7. E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan,
    “Methods to Advance Technology of Proton Exchange Membrane
    Fuel Cells ” J. Electrochemical. Soc., vol. 135, p.2209(1998) 。
    8. A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand
    Reinhold, New York (1989).
    9. 鄭煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,
    178
    第二十七卷第二期,118 頁,(1997)。
    10. A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand
    Reinhold, New York (1989).
    11. Hiroyuki Uchida, Yohsuke Mizuno,and Masahiro Watanabeb,”
    Suppression of Methanol Crossover and Distribution of Ohmic
    Resistance in Pt-Dispersed PEMs under DMFC Operation” Journal of
    The Electrochemical Society, 149 (6) A682-A687 (2002)
    12. P. S. Kauranen, E. Skou, “Methanol Permeability in perflousulfonate
    proton exchange membranes at elevated temperature” J. Appl.
    Electrochem.,26,(1996),909.
    13. X. M. Ren, M. S. Wilson, and S. Gottesfeld. J. Electrochem.
    Soc.,143,115,(1996)
    14. J. Cruickshank, and K. Scott, J. Power Source, 70, 40(1998)
    15. D.H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, “Performance of a direct
    methanol polymer electrolyte fuel cell”, J. Power Source,
    71,(1998),169.
    16. K. Scott, W.M. Taama, P. Argyropoulos, K. Sundmacher, “ The
    impact of mass transport and methanol crossover on the direct
    methanol fuel cell”, J. Power Sources, 83,(1999),204
    17. S. R. Samms, S Wasmus, and R. F. Savinell,” Thermal stability of
    Nafion in simunlated fuel cell environments”, J. Electrochem. Soc.
    143,(1996), 1498.
    18. S. Hikita, K. Yamane, Y. Makajima, “ Measurement of methanol
    crossover in direct methanol fuel cell”, JSAE Review, 22,(2001),151
    19. D.H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, “Performance of a direct
    179
    methanol polymer electrolyte fuel cell”, J. Power Source,
    71,(1998),169.
    20. Z. Ogumi, Tohru Kuroe and Zen-Ichiro Takehara, “Gas Permeation In
    SPE Method - Ⅱ. Oxygen and Hydrogen Permeation through
    Nafion”, J. Electrochem. Soc., Vol. 132, p. 2601 (1985).
    21. T. Arimura, D. Ostrovskii, T. Okada and G. Xie, “The Effect of
    Additives on the Ionic Conductivity Performances of Perfluoroalkyl
    Sulfonated Ionomer Membranes”Solid State Ionics, 118, 1-10 (1999).
    22. X. Ren, M. Wilson and S. Gottesfeld, “High performance direct
    methanol polymer electrolyte fuel cell”, J. Electrochem. Soc. 143,
    (1996), L12
    23. L. J. Hobson,a,z H. Ozu,a M. Yamaguchi,” Modified Nafion 117 as an
    Improved Polymer Electrolyte Membrane for Direct Methanol Fuel
    Cells” Journal of The Electrochemical Society, 148 (10)
    A1185-A1190 (2001)。
    24. C. Pu, W. Huang,” A methanol impermeable proton conducting
    composite electrolyte system”, J. Electrochem. Soc. 142,(1995),L119
    25. M.A. Smit , A.L. Ocampoa, M.A. Espinosa-Medina , P.J. Sebastián,”
    A modified Nafion membrane with in situ polymerized polypyrrole
    for the direct methanol fuel cell” Journal of Power Sources 124 (2003)
    59–64)
    26. C.S.C. Bose, K. Rajeshwar, J. Electroanal. Chem. 333 (1992)
    235–256.
    27. T. Arimura, D. Ostrovskii, T. Okada, G. Xie, Solid State Ionics
    118(1999) 1–10.
    180
    28. L. J. Hobson,a,z H. Ozu,a M. Yamaguchi,b and S. Hayasea” Modified
    Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct
    Methanol Fuel Cells” Journal of The Electrochemical Society, 148
    (10) A1185-A1190 (2001)
    29. A. Kuver, K. Potje-Kaamloth,”Comparative study of methanol
    crossover across electropolymerized and commercial proton exchange
    membrane electrolytes for the acid direct methanol fuel cell”,
    Electrochem. Acta, 43, (1998), 2527.
    30. J. S. Wainright, D. Wang, R. F. Weng, M. Savinell, and J. Litt, J.
    Electrochem. Soc., 142, 121 (1995).
    31. M. Weng, J. S. Wainright, U. Landau, R. F. Savinell, J. Electrochem.
    Soc., 143, 1260 (1996).
    32. William H. Lizcano-Valbuena , Valdecir A. Paganin , Carlos A.P.
    Leite ,Fernando Galembeck , Ernesto R. Gonzalez ,” Catalysts for
    DMFC: relation between morphology and electrochemical
    performance” Electrochimica Acta 48 (2003) 3869-3878
    33. M.-S. Lo¨ffler , H. Natter , R. Hempelmann , K. Wippermann,”
    Preparation and characterisation of Pt-Ru model electrodes for the
    direct methanol fuel cell” Electrochimica Acta 48 (2003) 3047-3051.
    34. Jong-Ho Choi, Kyung-Won Park, Hye-Kyung Lee, Young-Min Kim,
    Jae-Suk Lee,Yung-Eun Sung “Nano-composite of PtRu alloy
    electrocatalyst and electronically conducting polymer for use as the
    anode in a direct methanol fuel cell” Electrochimica Acta 48 (2003)
    2781-2789
    35. William H. Lizcano-Valbuena, Valdecir A. Paganin, Ernesto R.
    Gonzalez,” Methanol electro-oxidation on gas diffusion electrodes
    181
    prepared with Pt/Ru/C catalysts”, Electrochimica Acta 47 (2002)
    3715-3722.
    36. Itaru Honmaz and Takako Toda,” Temperature Dependence of
    Kinetics of Methanol Electro-oxidation on PtSn Alloys”, Journal of
    The Electrochemical Society, 150 (12) A1689-A1692 (2003).
    37. Jong-Ho Choi, Kyung-Won Park, Boo-Kil Kwon, and Yung-Eun
    Sung,” Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode
    Electrocatalysts at Different Temperatures for DMFCs”, Journal of
    The Electrochemical Society, 150 (7) A973-A978 (2003).
    38. Bogdan Gurau, Rameshkrishnan Viswanathan, Renxuan Liu, Todd J.
    Lafrenz,Kevin L. Ley, and E. S. Smotkin,” Structural and
    Electrochemical Characterization of Binary, Ternary, and Quaternary
    Platinum Alloy Catalysts for Methanol Electro-oxidation1”, J. Phys.
    Chem. B 1998, 102, 9997-10003
    39. Shawn D. Lin and Ting-Chou Hsiao “Morphology of Carbon
    Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for
    PEM Fuel Cells”, J. Phys. Chem. Nol.103 p97-103(1999)
    40. T. E. Shubina, M. T. M. Koper “Quantum-chemical calculations of
    CO and OH interacting with bimetallic surfaces” , Electrochimica
    Acta Vol.47 p3621-3628(2002)
    41. Meng-Sheng Liao, Carlos R. Cabrera, Yasuyuki Ishikawa “A
    theoretical study of CO adsorption on Pt, Ru and Pt-M (M=Ru, Sn,
    Ge) clusters”, Surface Science Vol.445 p267-282(2000)
    42. Hubert A. Gasteiger, Nenad M. Markovic, and Philip N. Ross, Jr. “H2
    and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2.
    Rotating Disk Electrode Studies of CO/H2 Mixtures at 62°C”, J. Phys.
    182
    Chem. Vol.99 p16757-16767(1995)
    43. Gouerec P., M. C. Denis, D. Guay, J. P. Dodelet, and R. Schulz,
    “ High Energy Ballmilled Pt-Mo Catalyst for Polymer Electrolyte
    Fuel Cells and Their Tolerance to CO”, J. Electrochem. Soc,
    147,3989(2000)
    44. K. L. Ley, R. Liu, and C. Pu, J. Electrochem. Soc., 144,1543(1997)
    45. Seol-Ah Lee, Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, and
    Yung-Eun Sung “Nanoparticle Synthesis and Electrocatalytic Activity
    of Pt Alloys for Direct Methanol Fuel Cells”, Journal of The
    Electrochemical Society, 149 A1299-A1304(2002)
    46. M. Gotz and H. Wendt”Binary and ternary anode catalyst
    formulations including the elements W, Sn and Mo for PEMFCs
    operated on methanol or reformate gas”, Electrochimica Acta Vol.43
    p3637-3644(1998)
    47. M.J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza
    “Development and performance characterization of new
    electrocatalysts for PEMFC” Journal of Power Sources Vol.106
    p206-214(2002)
    48. Masahiro Kishida, Kazuyuki Umakoshi, Jun-ichi Ishiyama, Hideo
    Nagata, Katsuhiko Wakabayashi “Hydrogenation of carbon dioxide
    over metal catalysts prepared using microemulsion”, Catalysis Today
    p355-359(1996)
    49. Giovanni Neri, Candida Milone, Andrea Donato, Lucina Mercadante
    & A. Maria Visce “Selective Hydrogenation of Citral over Pt-Sn
    Supported on Activated Carbon”, J. Chem Tech. Biotechnol. Vol.60
    p83-88(1994)
    183
    50. G. Neri, C. Milone, S. Galvagno, A.P.J. Pijpers, J. Schwank
    “Characterization of Pt-Sn/carbon hydrogenation catalysts”, Applied
    Catalysis A:General Vol.227 p105-115(2002)
    51. A.Erhan Aksoylu, M. Madalena A. Freitas, Jose L. Figueiredo
    “Bimetallic Pt-Sn catalysts supported on activated carbon.Ⅱ. CO
    oxidation” , Catalysis Today Vol.62 p337-346 (2000)
    52. A. Honji, T. Mori, and Y. Hishinuma “Platinum Dispersed on Carbon
    Catalyst for a Fuel Cell:A Preparation with Sorbitan Monolaurate” J.
    Electrochem. Soc. Vol.137 p2084(1990)
    53. 林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,國立台灣科
    技大學化學工程系碩士論文(2002)
    54. S. Wasmus, W. Vielstcich “Methanol oxidation at carbon supported Pt
    and Pt-Ru electrodes: an on line MS study using technical electrodes”
    Journal of Applied Electrochemistry Vol.23 p120-124(1993)
    55. J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan and S.
    A. Weeks “Porous Carbon Anodes For The Direct Methanol Fuel
    Cell-Ⅰ. The Role Of The Reduction Method For Carbon Supported
    Platinum Electrodes”, Electrochimica Acta, Vol.35 p199-207(1990)
    56. A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi,
    Anovel route to prepare stable Pt-Ru/C electrocatalysts for polymer
    electrolyte fuel cell”, Electrochimica Acta 48, p255-262(2002)
    57. A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V.
    Antonucci, “Investigation of a carbon-supported quaternary
    Pt-Ru-Sn-W catalyst for direct methanol fuel cells”, Journal of Power
    184
    Sources 55, p159-166(1995)
    58. H. E. Van Dam and H. Van Bekkum “Preparation of Platium of
    Activated Carbon”, Journal of Catalysis Vol.131, p335-349(1991)
    59. R. Pattabiraman “Preparation of Highly Dispersed Platinum Catalysts
    for Methanol Fuel Cells”, Bulletin of Electrochemistry
    p352-355(1993)
    60. R. Pattabiraman “Development of Playinum-Ruthenium Alloy
    Electrocatalysis for Direct Oxidation of Methanol in Fuel Cells”,
    Bulletin of Electrochemistry p348-351(1993)
    61. P. Argyropoulos, K. Scott, and W. M. Taama, J. Appl. Electrochem.,
    29, 661 (1999)
    62. J. Cruickshank, and K. Scott, J. Power Source, 70, 40 (1998)
    63. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R.
    Tunold,” Influence of diffusion layer properties on low temperature
    DMFC”, Journal of Power Sources 127 (2004) 187–196
    64. T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for
    the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”,
    J. Electrohem. Soc. Vol. 136, p. 1594 (1989).
    65. H. Dohle , J. Divisek, R. Jung,” Process engineering of the direct
    methanol fuel cell”, Journal of Power Sources 86 2000 469–477
    66. 黃鎮江,燃料電池,8-5 頁
    67. T. Freelink, W. Visscher, and J.A.R.van Veen, Surf.
    Sci.,335,353(1995)
    68. D. H. Jung, C. H. Lee, and C. S. Kim,J. Power Sources,17,169,(1998)
    69. William H. Lizcano-Valbuena, Valdecir A. Paganin, Ernesto R.
    185
    Gonzalez,” Methanol electro-oxidation on gas diffusion electrodes
    prepared with Pt_/Ru/C catalysts”, Electrochimica Acta 47 (2002)
    3715-3722
    70. Allen J. Bard, Larry R. Faulkner, “electrochemical methods
    fundamentals and applications”, JOHN WILEY & SONS, INC.,
    p27(2001)
    71. John S. Newman, “Electrochemical systems”, Prentice-Hall,
    Inc.,p380(1991)
    72. 薛志鴻,”質子交換模型燃料電池電極在CO 存在下之阻抗分析”,
    國立成功大學化學工程系碩士論文(2003)
    73. M. Dawn Bernardi, Verbrugge Mark W., “A Mathematical Model of
    the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., vol.
    139, p. 2477, (1992).
    74. Thomas A. Zawodzinski, Jr., Charles Derouin, Susan Radzinski, Ruth
    J. Sherman, Van T. Smith, Thomas E. springer, Shimshon Gottesfeld,
    “Water Uptake by and Transport through Nafion 117 Membrane”, J.
    Electrochem. Soc., vol. 140, p. 1041, (1993).
    75. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R.
    Tunold,” Influence of diffusion layer properties on low temperature
    DMFC”, Journal of Power Sources 127 (2004) 187–196
    76. Kyung-Won Park, Bu-Kil Kwon, Jong-Ho Choi, In-Su Park,
    Young-Min Kim, Yung-Eun Sung,” New RuO2 and carbon–RuO2
    composite diffusion layer for use in direct methanol fuel cells”,
    Journal of Power Sources 109 (2002) 439–445
    77. T. Bewer, T. Beckmann, H. Dohle., J. Mergel, D. Stolten,” Novel
    186
    method for investigation of two-phase flow in liquid feed direct
    methanol fuel cells using an aqueous H2O2 solution”, Journal of
    Power Sources 125 (2004) 1–9
    78. Junbom Kim, Seong-Min Lee, Supramaniam Srinivasan, “Modeling
    of Proton Exchange Membrane Fuel Cell Performance with an
    Empirical Equation”, J. Electrochem. Soc., vol. 142, p. 2670 (1995).
    79. Young Tai Kho and Supramaniam Srinivasan, “Mass Transport
    Phenomens in Proton Exchange Membrane Fuel Cells Using O2/He,
    O2/Ar and O2/N2 Mixture Ⅱ Theoretical Analysis”, J. Electrochem.
    Soc., vol. 141, p. 2089 (1994).
    80. S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, J.
    Power Source, vol. 22, p. 359, (1988).
    81. C. M. Brett, Ana M. O. Breet, “Electrochemistry-Principles, Methods,
    and Applications”, Oxford, New York, p. 405 (1993).
    82. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals
    and applications”, Wiley, New York, (2001).
    83. R. De Levie, “On Porous Electrodes in Electrolyte Solution-Ⅳ”,
    Electrochim. Acta, vol. 9, p. 1231, (1964).
    84. R. De Levie, “On Porous Electrodes in Electrolyte Solution”,
    Electrochim. Acta, vol. 8, p. 751, (1963).
    85. T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for
    the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”,
    J. Electrohem. Soc. Vol. 136, p. 1594 (1989).
    86.H. Huang, P. K. Dasgupta, Z. Genfa and J. Wang, “Pulse
    Amperometric Sensor for the Measurement of Atmospheric Hydrogen
    Peroxide”, Analytical Chem., Vol. 68(13), p. 2026 (1996).
    87. J. S. Do. and R. Y. Shieh, “Electrochemical Nitrigen Dioxide Gas
    187
    Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators,
    B37(1-2), p. 19 (1996).
    88. B,N.Grgur, N.M.Markovic and P. N. Ross, “Electrooxidation of H2,
    CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy
    electrode and comparison with other Pt binary alloys”, Electrochimica
    Acta vol.43 p3631-3635(1998)
    89. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, Jr.,
    “Electrooxidation of H2/CO, and H2/CO Mixtures on a
    Well-Characterized Pt70Mo30 Bulk Alloy Electrode”, J. Phys. Chem.
    Vol.102 p2494-2501(1998)
    90. Eleanor M. Crabb, Robert Marshall, and David Thompsett”Carbon
    Monoxide Electro-oxidation Properties of Carbon-Supported PtSn
    Catalysts Prepared Using Surface Organometallic Chemistry”, Journal
    of The Electrochemical Society Vol. 147 p4440-4447(2000)
    91. 黃煜騰、鄭耀宗、吳龍暉, ”燃料電池使用台灣地區生質氣體能源
    的潛力分析”,八十二年能源經濟學術研討會論文集, P.281~301
    92. Mahlon S. Wilson and Shimshon Gottesfeld , “High Performance
    Catalyzed Membranes of Ultra-low Pt Loadings for Polymer
    Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 139, No.2,
    L.28(1992)
    93. Mahlon S. Wilson, Judith A. Valerio and Shimshon Gottesfeld, “Low
    Platinum Loading Electrodes For Polymer Electrolyte Fuel Cell
    Fabricated Using Thermoplastic Ionomers”, Electrochimica Acta, Vol.
    40, p355(1995)
    94. 亞太燃料電池李英正,” -先進電池技術發展與應用-PEMFC 的測
    試與製作” 財團法人自強工業科學基金會九十一年度工業人才
    培訓計畫講義(2002)
    95. M. S. Wilson, S. Gottesfeld,”Thin-Film catalyst layers for polymer
    188
    electrolyte fuel cell electrodes” J. Appl. Electrochemistry, 22,
    p.1-7(1992)
    96. 陳孟震,以含浸還原法製備PEMFC 膜電極組與電池之研究,國
    立成功大學化工系碩士論文(2000)。
    97. Makoto Ucjida, Yuko Aoyama, Nobuo Eda, Akira Ohta, “New
    Preparation Method for Polymer Electrolyte Fuel Cells”, J.
    Electrochem. Soc., vol. 142, p. 463, (1995).
    98. J. M. Song , S. Y. Cha , W. M. Lee.”Optimal composition of polymer
    electrolyte fuel cell electrodes determined by the AC impedance
    method” Journal of Power Sources, 94 p78-84 (2001)
    99. Makoto Uchida, Yuko Aoyama, Nobuo Eda, and Akira Ohta “New
    Preparation Method for Polymer-Electrolyte Fuel Cells”, J.
    Electrochem. Soc., Vol. 142 p463(1995)
    100. Young-Gab Chun, Chang-Soo Kim. Dong-Hyun Peck, Dong-Ryul
    Shin “Performance of a polymer electrolyte membrane fuel cell with
    thin film catalyst electrodes” Journal of Power Sources 71
    p174-178(1998)
    101. Y. Morimoto and E. B. Yeager, “Comparison of Methanol Oxidations
    on Pt, Pt/Ru and Pt/Sn electrodes”, 444, 95-100(1998)
    102. Journal of The Electrochemical Society, 151 (1) A69-A76 (2004)
    103.Jens T. Muller, Peter M. Urban. ”Impedance studies of direct
    methanol fuel cell anodes” Journal of Power Sources 84 (1999)
    p157-160
    104.Yi-Cheng Liu, Xin-Ping Qiu, Wen-Tao Zhu, Guo-Shi
    Wu, ”Impedance studies on microbeads supported Pt-Ru catalytic
    anode”, Journal of Power Sources 114 (2003) 10-14
    105. Experimental data from the compilation by Gmehling, J. and Onken,
    U. 1977. Vapor-Liquid Equilibrium Data Collection, Dechema,
    189
    Frankfurt, Germany, vol. 1, p. 60.
    106. Industrial Solvent Handbook, p.294
    107. William H. Lizcano-Valbuena , Valdecir A. Paganin , Carlos A.P.
    Leite ,Fernando Galembeck , Ernesto R. Gonzalez , Electrochimica
    Acta 48 (2003) 3869~3878
    108. Jens T. Muller, Peter M. Urban, ”Journal of Power Sources
    75(1998)139-143
    109. 黃鎮江,燃料電池,全華科技圖書出版,8-15頁
    110. Epelboin, I., Gabrelli, “The study of passivation process by the
    electrode impedance analysis, in comprehensive treatise of
    electrochemistry”, vol. 4, plenum Press, New York, p.151(1981)
    111. M. Eikerling, A. A. Kornyshev, “Electrochemical Impedance of the
    Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells”, J.
    Electroanal. Chem. Soc.,vol. 475, p. 107, (1999).
    112. John C. Amphlett, Brant A. Peppley, “The effect of anode flow
    characteristics and temperature on the performance of a direct
    methanol fuel cell”, Journal of Power Sources Vol.96 (2001)
    p.204-213.

    下載圖示 校內:立即公開
    校外:2004-09-10公開
    QR CODE