| 研究生: |
陳慕辰 Chen, Mu-Chen |
|---|---|
| 論文名稱: |
直接甲醇燃料電池陰陽兩極阻抗分析 Impedance Analysis for Anode and Cathode of Direct Methanol Fuel Cell |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | 阻抗分析 、直接甲醇燃料電池 、甲醇滲透現象 |
| 外文關鍵詞: | DMFC, methanol crossover, AC impedance |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
以甲醇為原料之直接甲醇燃料電池存在嚴重的甲醇滲透問題,不
但造成甲醇燃料的流失,亦會與氧氣形成混成電位(mixed potential)
降低陰極電位使電池效能變差。本研究以含浸法製備Pt/C 作為陰極
觸媒,Pt-Ru/C 作為陽極觸媒,在不同的進料濃度、溫度、流速及電
池溫度進行放電測試,以氫參考電極、陰極、陽極形成三極式系統作
放電極化曲線及交流阻抗分析,分別以陰陽兩極的角度探討操作條件
對甲醇滲透及電池效能的影響。
本研究氫參考電極設計在操作條件下不存在甲醇滲透對參考電
極的影響,可長時間維持穩定與可靠性。三極式有別於一般二極式系
統僅可得到兩極阻抗值的總和,對陰陽兩極分別探討更可了解阻抗的
研究發現,進料甲醇濃度對甲醇滲透的影響甚鉅,陰極電位隨著
甲醇濃度的上升而明顯下降。陽極電位明顯上升,推測和甲醇氧化的
中間物一氧化碳的吸附性質有關。
除了操作條件外,擴散層對電池效能也有影響。擴散層的疏水性
可以幫助陽極二氧化碳的排除及陰極水分的排除,但疏水性材質較不
導電,會增加電池的內電阻,因此在擴散層的選擇上必須取決於膜電
II
極組的特性、系統特性以及操作條件。對本系統而言,由於陰極的氧
氣無增濕,在大電流下亦不會產生泛溢現象,因此陰極採非疏水性材
質,陽極採疏水性材質時可得到最佳的效能。
甲醇進料溫度升高到60oC 對陽極效能的提升非常有幫助,推測甲
醇在此溫度以上活性大增,有助於氧化反應的進行。甲醇流速越高,
對一氧化碳排除的效果越好,電極表面不受二氧化碳覆蓋時甲醇的質
傳顯得容易,陽極效能隨之上升。
Abstract
One of the most serious problems of direct methanol fuel cell
(DMFC) is methanol crossover. The methanol permeability through the
membrane not only loses the fuel of methanol but also decreases the cell
potential due to mixed potential of cathode with oxygen. This research
used the impregnation method to prepare Pt/C as cathode catalyst,
Pt-Ru/C as anode catalyst. The discharging test of the cell was operated at
different concentrations, temperatures, flow rates of the fuel and the cell
temperature. Hydrogen reference electrode、cathode electrode、anode
electrode were applied in the three-electrode mode system to obtain the
discharging polarization curve and AC impedance analysis. The effects of
operating condition on the methanol permeation and cell performance
were investigated from the points of view of anode and cathode.
This research has fabricated a hydrogen reference electrode with
good stability and reliability. The inference from the methanol
permeation to the reference electrode can be neglected in 12-hour
operation. Three-electrode mode system is better than two-electrode
mode system was the sum of those on two electrodes and three-electrode
mode system can separate the anode impedance and cathode impedance.
In this study, the methanol permeation was strongly affected by the
methanol concentration. Cathode potential decrease if methanol
concentration increased. Anode potential increase with methanol
IV
concentration probably caused by different kinds of (CO)ads on the
electrode.
Beside the operating condition, the type of diffusion layer also
effected for the cell performance. The hydrophobic property of diffusion
layer can help expulsing carbon dioxide from the anode side and water
from the cathode side. But hydrophobic property degraded conductivity
and hence increased the inner resistance of fuel cell. In this system,
oxygen in cathode side was not humidified, no flooding on the electrode
happened even at high current density. Therefore, the best performance
was obtained when the diffusion layers were hydrophilic at cathode and
hydrophobic at anode.
Higher temperature of methanol than 60oC can be much helpful to
improve the anode performance. Increase in the temperature increase the
methanol activity significantly and helped the process of oxidation
reaction. The higher methanol flow rate, the better carbon dioxide
expulsing. When the coverage of carbon dioxide on the electrode
decrease, the mass transfer of methanol across the diffusion layer was
easier and the anode performance improved.
參考文獻
1. J. Giner and C. Hunter, “Model of a Hydrogen-Air Fuel Cell with
Alkaline Electrolyte”, J. Electrochem. Soc., Vol. 116, p. 1124, (1969.)
2. 鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,
第二十五卷第四期。161 頁,(1995)。
3. O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric
Acid Fuel Cells (PAFC)”, J. Appl. Electrochem. , vol. 22, p. 995
(1992)
4. E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan,
“Methods to Advance Technology of Proton Exchange Membrane
Fuel Cells ” J. Electrochemical. Soc., vol. 135, p.2209(1998) 。
5. 李國霖,熔融碳酸鹽燃料電池的研發,能源季刊,第二十四卷第
四期,57 頁,(1997)。
6. K. Scott, W.M. Taama, P. Argyropoulos, “Engineering Aspects of the
Direct Methanol Fuel Cell System”, J. Power Sources, vol. 79, p. 43,
(1999).
7. E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan,
“Methods to Advance Technology of Proton Exchange Membrane
Fuel Cells ” J. Electrochemical. Soc., vol. 135, p.2209(1998) 。
8. A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand
Reinhold, New York (1989).
9. 鄭煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,
178
第二十七卷第二期,118 頁,(1997)。
10. A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand
Reinhold, New York (1989).
11. Hiroyuki Uchida, Yohsuke Mizuno,and Masahiro Watanabeb,”
Suppression of Methanol Crossover and Distribution of Ohmic
Resistance in Pt-Dispersed PEMs under DMFC Operation” Journal of
The Electrochemical Society, 149 (6) A682-A687 (2002)
12. P. S. Kauranen, E. Skou, “Methanol Permeability in perflousulfonate
proton exchange membranes at elevated temperature” J. Appl.
Electrochem.,26,(1996),909.
13. X. M. Ren, M. S. Wilson, and S. Gottesfeld. J. Electrochem.
Soc.,143,115,(1996)
14. J. Cruickshank, and K. Scott, J. Power Source, 70, 40(1998)
15. D.H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, “Performance of a direct
methanol polymer electrolyte fuel cell”, J. Power Source,
71,(1998),169.
16. K. Scott, W.M. Taama, P. Argyropoulos, K. Sundmacher, “ The
impact of mass transport and methanol crossover on the direct
methanol fuel cell”, J. Power Sources, 83,(1999),204
17. S. R. Samms, S Wasmus, and R. F. Savinell,” Thermal stability of
Nafion in simunlated fuel cell environments”, J. Electrochem. Soc.
143,(1996), 1498.
18. S. Hikita, K. Yamane, Y. Makajima, “ Measurement of methanol
crossover in direct methanol fuel cell”, JSAE Review, 22,(2001),151
19. D.H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, “Performance of a direct
179
methanol polymer electrolyte fuel cell”, J. Power Source,
71,(1998),169.
20. Z. Ogumi, Tohru Kuroe and Zen-Ichiro Takehara, “Gas Permeation In
SPE Method - Ⅱ. Oxygen and Hydrogen Permeation through
Nafion”, J. Electrochem. Soc., Vol. 132, p. 2601 (1985).
21. T. Arimura, D. Ostrovskii, T. Okada and G. Xie, “The Effect of
Additives on the Ionic Conductivity Performances of Perfluoroalkyl
Sulfonated Ionomer Membranes”Solid State Ionics, 118, 1-10 (1999).
22. X. Ren, M. Wilson and S. Gottesfeld, “High performance direct
methanol polymer electrolyte fuel cell”, J. Electrochem. Soc. 143,
(1996), L12
23. L. J. Hobson,a,z H. Ozu,a M. Yamaguchi,” Modified Nafion 117 as an
Improved Polymer Electrolyte Membrane for Direct Methanol Fuel
Cells” Journal of The Electrochemical Society, 148 (10)
A1185-A1190 (2001)。
24. C. Pu, W. Huang,” A methanol impermeable proton conducting
composite electrolyte system”, J. Electrochem. Soc. 142,(1995),L119
25. M.A. Smit , A.L. Ocampoa, M.A. Espinosa-Medina , P.J. Sebastián,”
A modified Nafion membrane with in situ polymerized polypyrrole
for the direct methanol fuel cell” Journal of Power Sources 124 (2003)
59–64)
26. C.S.C. Bose, K. Rajeshwar, J. Electroanal. Chem. 333 (1992)
235–256.
27. T. Arimura, D. Ostrovskii, T. Okada, G. Xie, Solid State Ionics
118(1999) 1–10.
180
28. L. J. Hobson,a,z H. Ozu,a M. Yamaguchi,b and S. Hayasea” Modified
Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct
Methanol Fuel Cells” Journal of The Electrochemical Society, 148
(10) A1185-A1190 (2001)
29. A. Kuver, K. Potje-Kaamloth,”Comparative study of methanol
crossover across electropolymerized and commercial proton exchange
membrane electrolytes for the acid direct methanol fuel cell”,
Electrochem. Acta, 43, (1998), 2527.
30. J. S. Wainright, D. Wang, R. F. Weng, M. Savinell, and J. Litt, J.
Electrochem. Soc., 142, 121 (1995).
31. M. Weng, J. S. Wainright, U. Landau, R. F. Savinell, J. Electrochem.
Soc., 143, 1260 (1996).
32. William H. Lizcano-Valbuena , Valdecir A. Paganin , Carlos A.P.
Leite ,Fernando Galembeck , Ernesto R. Gonzalez ,” Catalysts for
DMFC: relation between morphology and electrochemical
performance” Electrochimica Acta 48 (2003) 3869-3878
33. M.-S. Lo¨ffler , H. Natter , R. Hempelmann , K. Wippermann,”
Preparation and characterisation of Pt-Ru model electrodes for the
direct methanol fuel cell” Electrochimica Acta 48 (2003) 3047-3051.
34. Jong-Ho Choi, Kyung-Won Park, Hye-Kyung Lee, Young-Min Kim,
Jae-Suk Lee,Yung-Eun Sung “Nano-composite of PtRu alloy
electrocatalyst and electronically conducting polymer for use as the
anode in a direct methanol fuel cell” Electrochimica Acta 48 (2003)
2781-2789
35. William H. Lizcano-Valbuena, Valdecir A. Paganin, Ernesto R.
Gonzalez,” Methanol electro-oxidation on gas diffusion electrodes
181
prepared with Pt/Ru/C catalysts”, Electrochimica Acta 47 (2002)
3715-3722.
36. Itaru Honmaz and Takako Toda,” Temperature Dependence of
Kinetics of Methanol Electro-oxidation on PtSn Alloys”, Journal of
The Electrochemical Society, 150 (12) A1689-A1692 (2003).
37. Jong-Ho Choi, Kyung-Won Park, Boo-Kil Kwon, and Yung-Eun
Sung,” Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode
Electrocatalysts at Different Temperatures for DMFCs”, Journal of
The Electrochemical Society, 150 (7) A973-A978 (2003).
38. Bogdan Gurau, Rameshkrishnan Viswanathan, Renxuan Liu, Todd J.
Lafrenz,Kevin L. Ley, and E. S. Smotkin,” Structural and
Electrochemical Characterization of Binary, Ternary, and Quaternary
Platinum Alloy Catalysts for Methanol Electro-oxidation1”, J. Phys.
Chem. B 1998, 102, 9997-10003
39. Shawn D. Lin and Ting-Chou Hsiao “Morphology of Carbon
Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for
PEM Fuel Cells”, J. Phys. Chem. Nol.103 p97-103(1999)
40. T. E. Shubina, M. T. M. Koper “Quantum-chemical calculations of
CO and OH interacting with bimetallic surfaces” , Electrochimica
Acta Vol.47 p3621-3628(2002)
41. Meng-Sheng Liao, Carlos R. Cabrera, Yasuyuki Ishikawa “A
theoretical study of CO adsorption on Pt, Ru and Pt-M (M=Ru, Sn,
Ge) clusters”, Surface Science Vol.445 p267-282(2000)
42. Hubert A. Gasteiger, Nenad M. Markovic, and Philip N. Ross, Jr. “H2
and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2.
Rotating Disk Electrode Studies of CO/H2 Mixtures at 62°C”, J. Phys.
182
Chem. Vol.99 p16757-16767(1995)
43. Gouerec P., M. C. Denis, D. Guay, J. P. Dodelet, and R. Schulz,
“ High Energy Ballmilled Pt-Mo Catalyst for Polymer Electrolyte
Fuel Cells and Their Tolerance to CO”, J. Electrochem. Soc,
147,3989(2000)
44. K. L. Ley, R. Liu, and C. Pu, J. Electrochem. Soc., 144,1543(1997)
45. Seol-Ah Lee, Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, and
Yung-Eun Sung “Nanoparticle Synthesis and Electrocatalytic Activity
of Pt Alloys for Direct Methanol Fuel Cells”, Journal of The
Electrochemical Society, 149 A1299-A1304(2002)
46. M. Gotz and H. Wendt”Binary and ternary anode catalyst
formulations including the elements W, Sn and Mo for PEMFCs
operated on methanol or reformate gas”, Electrochimica Acta Vol.43
p3637-3644(1998)
47. M.J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza
“Development and performance characterization of new
electrocatalysts for PEMFC” Journal of Power Sources Vol.106
p206-214(2002)
48. Masahiro Kishida, Kazuyuki Umakoshi, Jun-ichi Ishiyama, Hideo
Nagata, Katsuhiko Wakabayashi “Hydrogenation of carbon dioxide
over metal catalysts prepared using microemulsion”, Catalysis Today
p355-359(1996)
49. Giovanni Neri, Candida Milone, Andrea Donato, Lucina Mercadante
& A. Maria Visce “Selective Hydrogenation of Citral over Pt-Sn
Supported on Activated Carbon”, J. Chem Tech. Biotechnol. Vol.60
p83-88(1994)
183
50. G. Neri, C. Milone, S. Galvagno, A.P.J. Pijpers, J. Schwank
“Characterization of Pt-Sn/carbon hydrogenation catalysts”, Applied
Catalysis A:General Vol.227 p105-115(2002)
51. A.Erhan Aksoylu, M. Madalena A. Freitas, Jose L. Figueiredo
“Bimetallic Pt-Sn catalysts supported on activated carbon.Ⅱ. CO
oxidation” , Catalysis Today Vol.62 p337-346 (2000)
52. A. Honji, T. Mori, and Y. Hishinuma “Platinum Dispersed on Carbon
Catalyst for a Fuel Cell:A Preparation with Sorbitan Monolaurate” J.
Electrochem. Soc. Vol.137 p2084(1990)
53. 林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,國立台灣科
技大學化學工程系碩士論文(2002)
54. S. Wasmus, W. Vielstcich “Methanol oxidation at carbon supported Pt
and Pt-Ru electrodes: an on line MS study using technical electrodes”
Journal of Applied Electrochemistry Vol.23 p120-124(1993)
55. J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan and S.
A. Weeks “Porous Carbon Anodes For The Direct Methanol Fuel
Cell-Ⅰ. The Role Of The Reduction Method For Carbon Supported
Platinum Electrodes”, Electrochimica Acta, Vol.35 p199-207(1990)
56. A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi,
Anovel route to prepare stable Pt-Ru/C electrocatalysts for polymer
electrolyte fuel cell”, Electrochimica Acta 48, p255-262(2002)
57. A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V.
Antonucci, “Investigation of a carbon-supported quaternary
Pt-Ru-Sn-W catalyst for direct methanol fuel cells”, Journal of Power
184
Sources 55, p159-166(1995)
58. H. E. Van Dam and H. Van Bekkum “Preparation of Platium of
Activated Carbon”, Journal of Catalysis Vol.131, p335-349(1991)
59. R. Pattabiraman “Preparation of Highly Dispersed Platinum Catalysts
for Methanol Fuel Cells”, Bulletin of Electrochemistry
p352-355(1993)
60. R. Pattabiraman “Development of Playinum-Ruthenium Alloy
Electrocatalysis for Direct Oxidation of Methanol in Fuel Cells”,
Bulletin of Electrochemistry p348-351(1993)
61. P. Argyropoulos, K. Scott, and W. M. Taama, J. Appl. Electrochem.,
29, 661 (1999)
62. J. Cruickshank, and K. Scott, J. Power Source, 70, 40 (1998)
63. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R.
Tunold,” Influence of diffusion layer properties on low temperature
DMFC”, Journal of Power Sources 127 (2004) 187–196
64. T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for
the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”,
J. Electrohem. Soc. Vol. 136, p. 1594 (1989).
65. H. Dohle , J. Divisek, R. Jung,” Process engineering of the direct
methanol fuel cell”, Journal of Power Sources 86 2000 469–477
66. 黃鎮江,燃料電池,8-5 頁
67. T. Freelink, W. Visscher, and J.A.R.van Veen, Surf.
Sci.,335,353(1995)
68. D. H. Jung, C. H. Lee, and C. S. Kim,J. Power Sources,17,169,(1998)
69. William H. Lizcano-Valbuena, Valdecir A. Paganin, Ernesto R.
185
Gonzalez,” Methanol electro-oxidation on gas diffusion electrodes
prepared with Pt_/Ru/C catalysts”, Electrochimica Acta 47 (2002)
3715-3722
70. Allen J. Bard, Larry R. Faulkner, “electrochemical methods
fundamentals and applications”, JOHN WILEY & SONS, INC.,
p27(2001)
71. John S. Newman, “Electrochemical systems”, Prentice-Hall,
Inc.,p380(1991)
72. 薛志鴻,”質子交換模型燃料電池電極在CO 存在下之阻抗分析”,
國立成功大學化學工程系碩士論文(2003)
73. M. Dawn Bernardi, Verbrugge Mark W., “A Mathematical Model of
the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., vol.
139, p. 2477, (1992).
74. Thomas A. Zawodzinski, Jr., Charles Derouin, Susan Radzinski, Ruth
J. Sherman, Van T. Smith, Thomas E. springer, Shimshon Gottesfeld,
“Water Uptake by and Transport through Nafion 117 Membrane”, J.
Electrochem. Soc., vol. 140, p. 1041, (1993).
75. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R.
Tunold,” Influence of diffusion layer properties on low temperature
DMFC”, Journal of Power Sources 127 (2004) 187–196
76. Kyung-Won Park, Bu-Kil Kwon, Jong-Ho Choi, In-Su Park,
Young-Min Kim, Yung-Eun Sung,” New RuO2 and carbon–RuO2
composite diffusion layer for use in direct methanol fuel cells”,
Journal of Power Sources 109 (2002) 439–445
77. T. Bewer, T. Beckmann, H. Dohle., J. Mergel, D. Stolten,” Novel
186
method for investigation of two-phase flow in liquid feed direct
methanol fuel cells using an aqueous H2O2 solution”, Journal of
Power Sources 125 (2004) 1–9
78. Junbom Kim, Seong-Min Lee, Supramaniam Srinivasan, “Modeling
of Proton Exchange Membrane Fuel Cell Performance with an
Empirical Equation”, J. Electrochem. Soc., vol. 142, p. 2670 (1995).
79. Young Tai Kho and Supramaniam Srinivasan, “Mass Transport
Phenomens in Proton Exchange Membrane Fuel Cells Using O2/He,
O2/Ar and O2/N2 Mixture Ⅱ Theoretical Analysis”, J. Electrochem.
Soc., vol. 141, p. 2089 (1994).
80. S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, J.
Power Source, vol. 22, p. 359, (1988).
81. C. M. Brett, Ana M. O. Breet, “Electrochemistry-Principles, Methods,
and Applications”, Oxford, New York, p. 405 (1993).
82. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals
and applications”, Wiley, New York, (2001).
83. R. De Levie, “On Porous Electrodes in Electrolyte Solution-Ⅳ”,
Electrochim. Acta, vol. 9, p. 1231, (1964).
84. R. De Levie, “On Porous Electrodes in Electrolyte Solution”,
Electrochim. Acta, vol. 8, p. 751, (1963).
85. T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for
the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”,
J. Electrohem. Soc. Vol. 136, p. 1594 (1989).
86.H. Huang, P. K. Dasgupta, Z. Genfa and J. Wang, “Pulse
Amperometric Sensor for the Measurement of Atmospheric Hydrogen
Peroxide”, Analytical Chem., Vol. 68(13), p. 2026 (1996).
87. J. S. Do. and R. Y. Shieh, “Electrochemical Nitrigen Dioxide Gas
187
Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators,
B37(1-2), p. 19 (1996).
88. B,N.Grgur, N.M.Markovic and P. N. Ross, “Electrooxidation of H2,
CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy
electrode and comparison with other Pt binary alloys”, Electrochimica
Acta vol.43 p3631-3635(1998)
89. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, Jr.,
“Electrooxidation of H2/CO, and H2/CO Mixtures on a
Well-Characterized Pt70Mo30 Bulk Alloy Electrode”, J. Phys. Chem.
Vol.102 p2494-2501(1998)
90. Eleanor M. Crabb, Robert Marshall, and David Thompsett”Carbon
Monoxide Electro-oxidation Properties of Carbon-Supported PtSn
Catalysts Prepared Using Surface Organometallic Chemistry”, Journal
of The Electrochemical Society Vol. 147 p4440-4447(2000)
91. 黃煜騰、鄭耀宗、吳龍暉, ”燃料電池使用台灣地區生質氣體能源
的潛力分析”,八十二年能源經濟學術研討會論文集, P.281~301
92. Mahlon S. Wilson and Shimshon Gottesfeld , “High Performance
Catalyzed Membranes of Ultra-low Pt Loadings for Polymer
Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 139, No.2,
L.28(1992)
93. Mahlon S. Wilson, Judith A. Valerio and Shimshon Gottesfeld, “Low
Platinum Loading Electrodes For Polymer Electrolyte Fuel Cell
Fabricated Using Thermoplastic Ionomers”, Electrochimica Acta, Vol.
40, p355(1995)
94. 亞太燃料電池李英正,” -先進電池技術發展與應用-PEMFC 的測
試與製作” 財團法人自強工業科學基金會九十一年度工業人才
培訓計畫講義(2002)
95. M. S. Wilson, S. Gottesfeld,”Thin-Film catalyst layers for polymer
188
electrolyte fuel cell electrodes” J. Appl. Electrochemistry, 22,
p.1-7(1992)
96. 陳孟震,以含浸還原法製備PEMFC 膜電極組與電池之研究,國
立成功大學化工系碩士論文(2000)。
97. Makoto Ucjida, Yuko Aoyama, Nobuo Eda, Akira Ohta, “New
Preparation Method for Polymer Electrolyte Fuel Cells”, J.
Electrochem. Soc., vol. 142, p. 463, (1995).
98. J. M. Song , S. Y. Cha , W. M. Lee.”Optimal composition of polymer
electrolyte fuel cell electrodes determined by the AC impedance
method” Journal of Power Sources, 94 p78-84 (2001)
99. Makoto Uchida, Yuko Aoyama, Nobuo Eda, and Akira Ohta “New
Preparation Method for Polymer-Electrolyte Fuel Cells”, J.
Electrochem. Soc., Vol. 142 p463(1995)
100. Young-Gab Chun, Chang-Soo Kim. Dong-Hyun Peck, Dong-Ryul
Shin “Performance of a polymer electrolyte membrane fuel cell with
thin film catalyst electrodes” Journal of Power Sources 71
p174-178(1998)
101. Y. Morimoto and E. B. Yeager, “Comparison of Methanol Oxidations
on Pt, Pt/Ru and Pt/Sn electrodes”, 444, 95-100(1998)
102. Journal of The Electrochemical Society, 151 (1) A69-A76 (2004)
103.Jens T. Muller, Peter M. Urban. ”Impedance studies of direct
methanol fuel cell anodes” Journal of Power Sources 84 (1999)
p157-160
104.Yi-Cheng Liu, Xin-Ping Qiu, Wen-Tao Zhu, Guo-Shi
Wu, ”Impedance studies on microbeads supported Pt-Ru catalytic
anode”, Journal of Power Sources 114 (2003) 10-14
105. Experimental data from the compilation by Gmehling, J. and Onken,
U. 1977. Vapor-Liquid Equilibrium Data Collection, Dechema,
189
Frankfurt, Germany, vol. 1, p. 60.
106. Industrial Solvent Handbook, p.294
107. William H. Lizcano-Valbuena , Valdecir A. Paganin , Carlos A.P.
Leite ,Fernando Galembeck , Ernesto R. Gonzalez , Electrochimica
Acta 48 (2003) 3869~3878
108. Jens T. Muller, Peter M. Urban, ”Journal of Power Sources
75(1998)139-143
109. 黃鎮江,燃料電池,全華科技圖書出版,8-15頁
110. Epelboin, I., Gabrelli, “The study of passivation process by the
electrode impedance analysis, in comprehensive treatise of
electrochemistry”, vol. 4, plenum Press, New York, p.151(1981)
111. M. Eikerling, A. A. Kornyshev, “Electrochemical Impedance of the
Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells”, J.
Electroanal. Chem. Soc.,vol. 475, p. 107, (1999).
112. John C. Amphlett, Brant A. Peppley, “The effect of anode flow
characteristics and temperature on the performance of a direct
methanol fuel cell”, Journal of Power Sources Vol.96 (2001)
p.204-213.