| 研究生: |
柳宗昀 Liu, Tsung-Yun |
|---|---|
| 論文名稱: |
Zfra對減輕腦創傷所導致類阿茲海默症症狀的潛在作用 A Potential Role of Zfra in Mitigating Traumatic Brain Injury Transition to Alzheimer's Disease-like Symptom |
| 指導教授: |
張南山
Chang, Nan-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 腦創傷 、阿茲海默症 、鋅手指樣蛋白 、錨蛋白重複結構40 、含雙色胺酸功能區氧化還原酶 |
| 外文關鍵詞: | TBI, AD, WWOX, ANR40, Zfra |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前研究顯示,海馬迴和大腦皮層中累積的pS14-WWOX可能導致阿茲海默症或其他神經性疾病。調節細胞凋亡的鋅手指樣蛋白(Zfra)可抑制pS14-WWOX積累並恢復三聯轉基因小鼠(3xTg)中阿茲海默症所造成的記憶喪失。在急性期腦創傷(TBI)中,過度表達的WWOX的Tyr33處被磷酸化,並在細胞核中累積造成受影響的區域的神經元死亡。透過免疫組織化學染色法發現, TBI會導致β澱粉樣蛋白聚集、α-突觸核蛋白上調和形成NFT。而Zfra可以顯著地防止β澱粉樣蛋白聚集和NFT形成。此外,我們發現TBI後一年,BALB/c小鼠的大腦中出現了pS14-WWOX和澱粉樣β聚集體的上調。但是受到死亡誘導的小鼠不會誘導pS14-WWOX表達而是會上調pY33-WWOX表達。此外,我們發現在急性與慢性腦創傷中,錨蛋白重複結構40表現量會上升,且會去磷酸化。然而,Zfra4-10胜肽會誘導磷酸化之錨蛋白重複結構40在急性腦創傷時表現,且會降低慢性腦創傷中錨蛋白重複結構40的表現亮。綜合以上觀察,結果表明在小鼠腦中,TBI可能轉變成類AD症狀,而Zfra4-10胜肽可透過調節pY33-WWOX和pS14-WWOX表達以阻止此轉變。
Recently, WWOX is defined as a risk factor for Alzheimer’s disease (AD). Previously, we determined that the accumulation of pS14-WWOX in the brain hippocampus and cortex correlates with the occurrence of AD and probably other neurodegeneration. In addition, we observed that pY33-WWOX is downregulated in AD patients. Zinc finger-like protein that regulates apoptosis (Zfra) suppresses pS14-WWOX accumulation and restores memory loss in triple transgenic mice (3xTg) for AD. The former study showed that when WWOX over-phosphorylation at Tyr33 is accumulated in the nuclei during the acute phase TBI, neuronal death occurs in the impacted area. In this study, we determined that TBI causes Aβ aggregation, alpha-synuclein, and NFT formation during chronic phase TBI. Zfra significantly prevents amyloid-beta aggregates during chronic phase TBI and reduces alpha-synuclein expression during acute phase TBI. Moreover, we discovered that the upregulation of pS14-WWOX occurs, and pY33-WWOX decreases in BALB/c mice brain post TBI for one year. However, mice received trauma do not induce pS14-WWOX expression but upregulate pY33-WWOX expression during acute phase TBI. On the other hand, ankyrin repeat domain 40 (ANR40) was upregulated and was de-phosphorylated at Ser154 during the acute and chronic phase TBI. However, Zfra4-10 peptide upregulated ANR40 phosphorylation at Ser154 during the acute phase TBI and decreased ANR40 expression during the chronic phase TBI. Together, our observations suggest the transition of TBI to AD-like symptom in mice are likely to occur, and that Zfra4-10 peptide prevents the transition by regulating the expression of pY33-WWOX and pS14-WWOX.
1. Pavlovic, D., Pekic, S., Stojanovic, M., and Popovic, V. (2019) Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 22, 270-282
2. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., and Nair, M. (2019) Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine 14, 5541
3. Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A., Chouraki, V., Martin, E. R., Sleegers, K., et al. (2019) Author Correction: Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 1423-1424
4. Lee, M. H., Shih, Y. H., Lin, S. R., Chang, J. Y., Lin, Y. H., Sze, C. I., Kuo, Y. M., and Chang, N. S. (2017) Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. Alzheimers Dement (N Y) 3, 189-204
5. Sze, C.-I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L.-J., Heath, J., Schultz, L., and Chang, N.-S. (2004) Down-regulation of WW domain-containing oxidoreductase induces tau phosphorylation in vitro a potential role in ALZHEIMER'S disease. J. Biol. Chem. 279, 30498-30506
6. Hsu, L. J., Hong, Q., Chen, S. T., Kuo, H. L., Schultz, L., Heath, J., Lin, S. R., Lee, M. H., Li, D. Z., Li, Z. L., Cheng, H. C., Armand, G., and Chang, N. S. (2017) Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. Oncotarget 8, 19137-19155
7. Chen, H. I., and Sudol, M. (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. PNAS 92, 7819-7823
8. Bork, P., and Sudol, M. (1994) The WW domain: a signalling site in dystrophin? Trends Biochem. Sci. 19, 531-533
9. Huang, S.-S., and Chang, N.-S. (2018) Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp. Biol. Med. 243, 137-147
10. Huang, S. S., Hsu, L. J., and Chang, N. S. (2020) Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system. FASEB bioAdvances 2, 234-253
11. Hofmann, K., and Bucher, P. (1995) The rsp5‐domain is shared by proteins of diverse functions. FEBS Lett. 358, 153-157
12. André, B., and Springael, J.-Y. (1994) WWP, a new amino acid motif present in single or multiple copies in various proteins including dystrophin and the SH3-binding Yes-associated protein YAP65. Biochem. Biophys. Res. Commun. 205, 1201-1205
13. Sudol, M., Chen, H. I., Bougeret, C., Einbond, A., and Bork, P. (1995) Characterization of a novel protein‐binding module—the WW domain. FEBS Lett. 369, 67-71
14. Salah, Z., Alian, A., and Aqeilan, R. I. (2012) WW domain-containing proteins: retrospectives and the future. Front. Biosci. 17, 331-348
15. Chang, N.-S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., and Zevotek, N. (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J. Biol. Chem. 276, 3361-3370
16. Ried, K., Finnis, M., Hobson, L., Mangelsdorf, M., Dayan, S., Nancarrow, J. K., Woollatt, E., Kremmidiotis, G., Gardner, A., and Venter, D. (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 9, 1651-1663
17. Bednarek, A. K., Laflin, K. J., Daniel, R. L., Liao, Q., Hawkins, K. A., and Aldaz, C. M. (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23. 3–24.1, a region frequently affected in breast cancer. Cancer Res. 60, 2140-2145
18. Chang, N.-S., Hsu, L.-J., Lin, Y.-S., Lai, F.-J., and Sheu, H.-M. (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol. Med. 13, 12-22
19. Del Mare, S., Salah, Z., and Aqeilan, R. I. (2009) WWOX: its genomics, partners, and functions. J. Cell. Biochem. 108, 737-745
20. Paige, A. J., Taylor, K. J., Taylor, C., Hillier, S. G., Farrington, S., Scott, D., Porteous, D. J., Smyth, J. F., Gabra, H., and Watson, J. V. (2001) WWOX: a candidate tumor suppressor gene involved in multiple tumor types. PNAS 98, 11417-11422
21. Yang, J., and Zhang, W. (2008) WWOX tumor suppressor gene. Histol. Histopathol.
22. Aqeilan, R. I., Pekarsky, Y., Herrero, J. J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S.-Y., Melino, G., and Huebner, K. (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. PNAS 101, 4401-4406
23. Abu-Remaileh, M., Khalaileh, A., Pikarsky, E., and Aqeilan, R. I. (2018) WWOX controls hepatic HIF1α to suppress hepatocyte proliferation and neoplasia. Cell Death Dis. 9, 1-12
24. Seabra, M. A. L., Cândido, E. B., Vidigal, P. V. T., Lamaita, R. M., Rodrigues, A. N., and da Silva Filho, A. L. (2018) Immunohistochemical WWOX expression and association with angiogenesis, p53 expression, cell proliferation and clinicopathological parameters in cervical cancer. Rev. Bras. Ginecol. Obstet. 40, 079-085
25. Abu-Odeh, M., Salah, Z., Herbel, C., Hofmann, T. G., and Aqeilan, R. I. (2014) WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response. PNAS 111, E4716-E4725
26. Abu-Odeh, M., Hereema, N. A., and Aqeilan, R. I. (2016) WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget 7, 4344
27. Gourley, C., Paige, A. J., Taylor, K. J., Ward, C., Kuske, B., Zhang, J., Sun, M., Janczar, S., Harrison, D. J., and Muir, M. (2009) WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin α3. Cancer Res. 69, 4835-4842
28. Richards, R. I., Choo, A., Lee, C. S., Dayan, S., and O’Keefe, L. (2015) WWOX, the chromosomal fragile site FRA16D spanning gene: its role in metabolism and contribution to cancer. Exp. Biol. Med. 240, 338-344
29. Abu-Remaileh, M., and Aqeilan, R. I. (2014) Tumor suppressor WWOX regulates glucose metabolism via HIF1 α modulation. Cell Death Differ. 21, 1805-1814
30. Abu-Odeh, M., Bar-Mag, T., Huang, H., Kim, T., Salah, Z., Abdeen, S. K., Sudol, M., Reichmann, D., Sidhu, S., and Kim, P. M. (2014) Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J. Biol. Chem. 289, 8865-8880
31. Hong, Q., Hsu, L.-J., Schultz, L., Pratt, N., Mattison, J., and Chang, N.-S. (2007) Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-κB, JNK1, p53 and WOX1 during stress response. BMC Mol. Biol. 8, 50
32. Hsu, L.-J., Hong, Q., Schultz, L., Kuo, E., Lin, S.-R., Lee, M.-H., Lin, Y.-S., and Chang, N.-S. (2008) Zfra is an inhibitor of Bcl-2 expression and cytochrome c release from the mitochondria. Cell. Signal. 20, 1303-1312
33. Yoshino, Y., and Ishioka, C. (2015) Inhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells. Sci. Rep. 5, 13249
34. Chang, N.-S., Schultz, L., Hsu, L.-J., Lewis, J., Su, M., and Sze, C.-I. (2005) 17 β-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene 24, 714-723
35. Göthlin Eremo, A., Wegman, P., Stål, O., Nordenskjöld, B., Fornander, T., and Wingren, S. (2013) Wwox expression may predict benefit from adjuvant tamoxifen in randomized breast cancer patients. Oncol. Rep. 29, 1467-1474
36. Ge, F., Chen, W., Yang, R., Zhou, Z., Chang, N., Chen, C., Zou, T., Liu, R., Tan, J., and Ren, G. (2014) WWOX suppresses KLF5 expression and breast cancer cell growth. Chin. J. Cancer Res. 26, 511
37. Nunez, M. I., Ludes-Meyers, J., Abba, M. C., Kil, H., Abbey, N. W., Page, R. E., Sahin, A., Klein-Szanto, A. J., and Aldaz, C. M. (2005) Frequent loss of WWOX expression in breast cancer: correlation with estrogen receptor status. Breast Cancer Res. Treat. 89, 99-105
38. Li, J., Liu, J., Li, P., Zhou, C., and Liu, P. (2018) The downregulation of WWOX induces epithelial-mesenchymal transition and enhances stemness and chemoresistance in breast cancer. Exp. Biol. Med. (Maywood) 243, 1066-1073
39. Huang, D., Qiu, F., Yang, L., Li, Y., Cheng, M., Wang, H., Ma, G., Wang, Y., Hu, M., and Ji, W. (2013) The polymorphisms and haplotypes of WWOX gene are associated with the risk of lung cancer in southern and eastern Chinese populations. Mol. Carcinog. 52, 19-27
40. Becker, S., Markova, B., Wiewrodt, R., Hoffarth, S., Hähnel, P. S., Pleiner, S., Schmidt, L. H., Breitenbuecher, F., and Schuler, M. (2011) Functional and clinical characterization of the putative tumor suppressor WWOX in non-small cell lung cancer. J. Thorac. Oncol. 6, 1976-1983
41. Zhang, P., Ying, L., Xu, R., Ge, S., Mei, W., Li, F., Dai, B., Lu, J., and Qian, G. (2010) Tumor-specific, hypoxia-regulated, WW domain-containing oxidoreductase-expressing adenovirus inhibits human non-small cell lung cancer growth in vivo. Hum. Gene Ther. 21, 27-39
42. Fabbri, M., Iliopoulos, D., Trapasso, F., Aqeilan, R. I., Cimmino, A., Zanesi, N., Yendamuri, S., Han, S.-Y., Amadori, D., and Huebner, K. (2005) WWOX gene restoration prevents lung cancer growth in vitro and in vivo. PNAS 102, 15611-15616
43. Quail, D. F., and Joyce, J. A. (2013) Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437
44. Karin, M. (2009) NF-κB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141
45. Zhang, Z., and Rigas, B. (2006) NF-κB, inflammation and pancreatic carcinogenesis: NF-κB as a chemoprevention target. Int. J. Oncol. 29, 185-192
46. Chen, S.-J., Huang, S.-S., and Chang, N.-S. (2013) Role of WWOX and NF-κB in lung cancer progression. Transl. Respir. Med. 1, 1-10
47. Chang, N.-S., Doherty, J., Ensign, A., Lewis, J., Heath, J., Schultz, L., Chen, S.-T., and Oppermann, U. (2003) Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem. Pharmacol. 66, 1347-1354
48. Lai, F.-J., Cheng, C.-L., Chen, S.-T., Wu, C.-H., Hsu, L.-J., Lee, J. Y.-Y., Chao, S.-C., Sheen, M.-C., Shen, C.-L., and Chang, N.-S. (2005) WOX1 is essential for UVB irradiation–induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin. Cancer. Res. 11, 5769-5777
49. Chang, N.-S., Doherty, J., Ensign, A., Schultz, L., Hsu, L.-J., and Hong, Q. (2005) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J. Biol. Chem. 280, 43100-43108
50. Chang, N.-S., Doherty, J., and Ensign, A. (2003) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J. Biol. Chem. 278, 9195-9202
51. Su, W.-P., Chen, S.-H., Chen, S.-J., Chou, P.-Y., Huang, C.-C., and Chang, N.-S. (2012) WW Domain-containing oxidoreductase is a potential receptor for sex steroid hormones. Sex Hormones 24, 333-351
52. Lin, H.-P., Chang, J.-Y., Lin, S.-R., Lee, M.-H., Huang, S.-S., Hsu, L.-J., and Chang, N.-S. (2011) Identification of an in vivo MEK/WOX1 complex as a master switch for apoptosis in T cell leukemia. Genes Cancer 2, 550-562
53. Chen, S.-J., Lin, P.-W., Lin, H.-P., Huang, S.-S., Lai, F.-J., Sheu, H.-M., Hsu, L.-J., and Chang, N.-S. (2015) UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures. Oncotarget 6, 8007
54. Chang, N.-S. (2016) Bubbling cell death: A hot air balloon released from the nucleus in the cold. Exp. Biol. Med. 241, 1306-1315
55. Chang, N.-S. (2015) Introduction to a thematic issue for WWOX. Exp. Biol. Med. 240, 281-284
56. McAtee, C. O., Barycki, J. J., and Simpson, M. A. (2014) Emerging roles for hyaluronidase in cancer metastasis and therapy. in Adv. Cancer Res., Elsevier. pp 1-34
57. Schmaus, A., Bauer, J., and Sleeman, J. P. (2014) Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev. 33, 1059-1079
58. Lokeshwar, V. B., Mirza, S., and Jordan, A. (2014) Targeting hyaluronic acid family for cancer chemoprevention and therapy. in Adv. Cancer Res., Elsevier. pp 35-65
59. Chanmee, T., Ontong, P., and Itano, N. (2016) Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett. 375, 20-30
60. Sherman, L. S., Matsumoto, S., Su, W., Srivastava, T., and Back, S. A. (2015) Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int. J. Cell Biol. 2015, 368584
61. Nikitovic, D., Kouvidi, K., Karamanos, N. K., and Tzanakakis, G. N. (2013) The roles of hyaluronan/RHAMM/CD44 and their respective interactions along the insidious pathways of fibrosarcoma progression. Biomed Res. Int. 2013, 929531
62. Martin, T. A., Harrison, G., Mansel, R. E., and Jiang, W. G. (2003) The role of the CD44/ezrin complex in cancer metastasis. Crit. Rev. Oncol. Hematol. 46, 165-186
63. Hsu, L.-J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M.-Y., Lai, F.-J., Lin, S.-R., Lee, M.-H., and Lo, C.-P. (2009) Transforming growth factor β1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J. Biol. Chem. 284, 16049-16059
64. Chang, J.-Y., He, R.-Y., Lin, H.-P., Hsu, L.-J., Lai, F.-J., Hong, Q., Chen, S.-J., and Chang, N.-S. (2010) Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp. Biol. Med. 235, 796-804
65. Hsu, L.-J., Chiang, M.-F., Sze, C.-I., Su, W.-P., Yap, Y. V., Lee, I., Kuo, H.-L., and Chang, N.-S. (2016) HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response. FRONT CELL DEV BIOL 4, 141
66. Chang, Y., Lan, Y.-Y., Hsiao, J.-R., and Chang, N.-S. (2015) Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Exp. Biol. Med. 240, 329-337
67. Fu, J., Qu, Z., Yan, P., Ishikawa, C., Aqeilan, R. I., Rabson, A. B., and Xiao, G. (2011) The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 117, 1652-1661
68. Lu, J., Lin, W.-H., Chen, S.-Y., Longnecker, R., Tsai, S.-C., Chen, C.-L., and Tsai, C.-H. (2006) Syk tyrosine kinase mediates Epstein-Barr virus latent membrane protein 2A-induced cell migration in epithelial cells. J. Biol. Chem. 281, 8806-8814
69. Scholle, F., Bendt, K. M., and Raab-Traub, N. (2000) Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol. 74, 10681-10689
70. Lan, Y.-Y., Wu, S.-Y., Lai, H.-C., Chang, N.-S., Chang, F.-H., Tsai, M.-H., Su, I.-J., and Chang, Y. (2013) WW domain-containing oxidoreductase is involved in upregulation of matrix metalloproteinase 9 by Epstein–Barr virus latent membrane protein 2A. Biochem. Biophys. Res. Commun. 436, 672-676
71. Lee, J., and Paull, T. (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741-7748
72. Schrock, M. S., Batar, B., Lee, J., Druck, T., Ferguson, B., Cho, J. H., Akakpo, K., Hagrass, H., Heerema, N. A., and Xia, F. (2017) WWOX–Brca1 interaction: role in DNA repair pathway choice. Oncogene 36, 2215-2227
73. Salah, Z., Aqeilan, R., and Huebner, K. (2010) WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncology 6, 249-259
74. Aldaz, C. M., Ferguson, B. W., and Abba, M. C. (2014) WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochim Biophys Acta Rev Cancer 1846, 188-200
75. Elbossaty, W., Malak, C., and Elghanam, D. (2015) Prognostic relevance of Ww-oxidoreductase gene expression in patients with acute lymphoblastic leukemia. J. Cancer Sci. Ther. 7, 302-307
76. Chen, X., Zhang, H., Li, P., Yang, Z., Qin, L., and Mo, W. (2013) Gene expression of WWOX, FHIT and p73 in acute lymphoblastic leukemia. Oncol. Lett. 6, 963-969
77. Cui, Z., Lin, D., Cheng, F., Luo, L., Kong, L., Xu, J., Hu, J., and Lan, F. (2013) The role of the WWOX gene in leukemia and its mechanisms of action. Oncol. Rep. 29, 2154-2162
78. Ishii, H., Vecchione, A., Furukawa, Y., Sutheesophon, K., Han, S.-Y., Druck, T., Kuroki, T., Trapasso, F., Nishimura, M., and Saito, Y. (2003) Expression of FRA16D/WWOX and FRA3B/FHIT Genes in Hematopoietic Malignancies. Mol. Cancer Res. 1, 940-947
79. Ishii, H., and Furukawa, Y. (2004) Alterations of common chromosome fragile sites in hematopoietic malignancies. Int. J. Hematol. 79, 238-242
80. Ludes‐Meyers, J. H., Kil, H., Nuñez, M. I., Conti, C. J., Parker‐Thornburg, J., Bedford, M. T., and Aldaz, C. M. (2007) WWOX hypomorphic mice display a higher incidence of B‐cell lymphomas and develop testicular atrophy. Genes Chromosomes Cancer 46, 1129-1136
81. Chang, N. (2016) WWOX drives T leukemia cell maturation via IκBα/WWOX/ERK signal pathway. J Tumor Res 2, e101
82. Huang, S. S., Su, W. P., Lin, H. P., Kuo, H. L., Wei, H. L., and Chang, N. S. (2016) Role of WW Domain-containing Oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. J. Biol. Chem. 291, 17319-17331
83. Gribaa, M., Salih, M., Anheim, M., Lagier-Tourenne, C., H'Mida, D., Drouot, N., Mohamed, A., Elmalik, S., Kabiraj, M., Al-Rayess, M., Almubarak, M., Bétard, C., Goebel, H., and Koenig, M. (2007) A new form of childhood onset, autosomal recessive spinocerebellar ataxia and epilepsy is localized at 16q21-q23. Brain 130, 1921-1928
84. Ben-Salem, S., Al-Shamsi, A. M., John, A., Ali, B. R., and Al-Gazali, L. (2015) A novel whole exon deletion in WWOX gene causes early epilepsy, intellectual disability and optic atrophy. J. Mol. Neurosci. 56, 17-23
85. Abdel-Salam, G., Thoenes, M., Afifi, H. H., Körber, F., Swan, D., and Bolz, H. J. (2014) The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet J. Rare Dis. 9, 12
86. Mallaret, M., Synofzik, M., Lee, J., Sagum, C. A., Mahajnah, M., Sharkia, R., Drouot, N., Renaud, M., Klein, F. A., Anheim, M., Tranchant, C., Mignot, C., Mandel, J. L., Bedford, M., Bauer, P., et al. (2014) The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain 137, 411-419
87. Cheng, Y. Y., Chou, Y. T., Lai, F. J., Jan, M. S., Chang, T. H., Jou, I. M., Chen, P. S., Lo, J. Y., Huang, S. S., Chang, N. S., Liou, Y. T., Hsu, P. C., Cheng, H. C., Lin, Y. S., and Hsu, L. J. (2020) Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3β-mediated epileptic seizure activity in mice. Acta Neuropathol Commun 8, 6
88. Tabarki, B., Al Mutairi, F., and Al Hashem, A. (2015) The fragile site WWOX gene and the developing brain. Exp. Biol. Med. 240, 400-402
89. Chen, S.-T., Chuang, J., Wang, J., Tsai, M., Li, H., and Chang, N.-S. (2004) Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience 124, 831-839
90. Suzuki, H., Katayama, K., Takenaka, M., Amakasu, K., Saito, K., and Suzuki, K. (2009) A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. Genes, Brain and Behav. 8, 650-660
91. Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., and Niewiadomska, G. (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci. 15, 4671-4713
92. Wang, H.-Y., Juo, L.-I., Lin, Y., Hsiao, M., Lin, J., Tsai, C., Tzeng, Y., Chuang, Y., Chang, N.-S., and Yang, C. (2012) WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3 β. Cell Death Differ. 19, 1049-1059
93. Lee, M. H., Lin, S. R., Chang, J. Y., Schultz, L., Heath, J., Hsu, L. J., Kuo, Y. M., Hong, Q., Chiang, M. F., Gong, C. X., Sze, C. I., and Chang, N. S. (2010) TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease. Cell Death Dis. 1, e110
94. Sze, C. I., Kuo, Y. M., Hsu, L. J., Fu, T. F., Chiang, M. F., Chang, J. Y., and Chang, N. S. (2015) A cascade of protein aggregation bombards mitochondria for neurodegeneration and apoptosis under WWOX deficiency. Cell Death Dis. 6, e1881
95. Chang, J. Y., and Chang, N. S. (2015) WWOX dysfunction induces sequential aggregation of TRAPPC6AΔ, TIAF1, tau and amyloid β, and causes apoptosis. Cell Death Discov 1, 15003
96. Adav, S. S., and Sze, S. K. (2016) Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling. Mol. Brain 9, 92
97. Leandro, P., and Gomes, C. M. (2008) Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini Rev. Med. Chem. 8, 901-911
98. Tran, L., and Ha-Duong, T. (2015) Exploring the Alzheimer amyloid-β peptide conformational ensemble: A review of molecular dynamics approaches. Peptides 69, 86-91
99. Serrano-Pozo, A., Frosch, M. P., Masliah, E., and Hyman, B. T. (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189
100. Schneider, J. A., Arvanitakis, Z., Leurgans, S. E., and Bennett, D. A. (2009) The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol. 66, 200-208
101. Revesz, T., McLaughlin, J. L., Rossor, M. N., and Lantos, P. L. (1997) Pathology of familial Alzheimer's disease with Lewy bodies. J. Neural Transm. Suppl. 51, 121-135
102. James, B. D., Wilson, R. S., Boyle, P. A., Trojanowski, J. Q., Bennett, D. A., and Schneider, J. A. (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia. Brain 139, 2983-2993
103. Ingelsson, M., Fukumoto, H., Newell, K. L., Growdon, J. H., Hedley-Whyte, E. T., Frosch, M. P., Albert, M. S., Hyman, B. T., and Irizarry, M. C. (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62, 925-931
104. Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356
105. Christensen, J., and McGrew, C. A. (2019) When Is It Safe to Drive after Mild Traumatic Brain Injury/Sports-related Concussion? Curr. Sports Med. Rep. 18, 17-19
106. Ling, H., Hardy, J., and Zetterberg, H. (2015) Neurological consequences of traumatic brain injuries in sports. Mol. Cell. Neurosci. 66, 114-122
107. McCrory, P., Feddermann-Demont, N., Dvořák, J., Cassidy, J. D., McIntosh, A., Vos, P. E., Echemendia, R. J., Meeuwisse, W., and Tarnutzer, A. A. (2017) What is the definition of sports-related concussion: a systematic review. Br. J. Sports Med. 51, 877-887
108. Bakhos, L. L., Lockhart, G. R., Myers, R., and Linakis, J. G. (2010) Emergency department visits for concussion in young child athletes. Pediatrics 126, e550-556
109. Bazarian, J. J., McClung, J., Shah, M. N., Cheng, Y. T., Flesher, W., and Kraus, J. (2005) Mild traumatic brain injury in the United States, 1998--2000. Brain Inj. 19, 85-91
110. Grady, M. F. (2010) Concussion in the adolescent athlete. Curr. Probl. Pediatr. Adolesc. Health Care 40, 154-169
111. Capizzi, A., Woo, J., and Verduzco-Gutierrez, M. (2020) Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med. Clin. North Am. 104, 213-238
112. Wilk, J. E., Thomas, J. L., McGurk, D. M., Riviere, L. A., Castro, C. A., and Hoge, C. W. (2010) Mild traumatic brain injury (concussion) during combat: lack of association of blast mechanism with persistent postconcussive symptoms. J. Head Trauma Rehabil. 25, 9-14
113. Maas, A. I. R., Menon, D. K., Adelson, P. D., Andelic, N., Bell, M. J., Belli, A., Bragge, P., Brazinova, A., Büki, A., Chesnut, R. M., Citerio, G., Coburn, M., Cooper, D. J., Crowder, A. T., Czeiter, E., et al. (2017) Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 16, 987-1048
114. Lasry, O., Liu, E. Y., Powell, G. A., Ruel-Laliberté, J., Marcoux, J., and Buckeridge, D. L. (2017) Epidemiology of recurrent traumatic brain injury in the general population: A systematic review. Neurology 89, 2198-2209
115. Masel, B. E., and DeWitt, D. S. (2010) Traumatic brain injury: a disease process, not an event. J. Neurotrauma 27, 1529-1540
116. Gaetz, M. (2004) The neurophysiology of brain injury. Clin. Neurophysiol. 115, 4-18
117. Cernak, I. (2005) Animal models of head trauma. NeuroRx 2, 410-422
118. Bramlett, H. M., and Dietrich, W. D. (2015) Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J. Neurotrauma 32, 1834-1848
119. Tarazi, A., Tator, C. H., and Tartaglia, M. C. (2016) Chronic Traumatic Encephalopathy and Movement Disorders: Update. Curr. Neurol. Neurosci. Rep. 16, 46
120. Prince, C., and Bruhns, M. E. (2017) Evaluation and Treatment of Mild Traumatic Brain Injury: The Role of Neuropsychology. Brain Sci 7, 105
121. Riggio, S., and Wong, M. (2009) Neurobehavioral sequelae of traumatic brain injury. Mt. Sinai J. Med. 76, 163-172
122. Murray, D. A., Meldrum, D., and Lennon, O. (2017) Can vestibular rehabilitation exercises help patients with concussion? A systematic review of efficacy, prescription and progression patterns. Br. J. Sports Med. 51, 442-451
123. Vallat-Azouvi, C., Paillat, C., Bercovici, S., Morin, B., Paquereau, J., Charanton, J., Ghout, I., and Azouvi, P. (2018) Subjective complaints after acquired brain injury: presentation of the Brain Injury Complaint Questionnaire (BICoQ). J. Neurosci. Res. 96, 601-611
124. Rabinowitz, A. R., Li, X., and Levin, H. S. (2014) Sport and nonsport etiologies of mild traumatic brain injury: similarities and differences. Annu. Rev. Psychol. 65, 301-331
125. Wang, M. L., and Li, W. B. (2016) Cognitive impairment after traumatic brain injury: The role of MRI and possible pathological basis. J. Neurol. Sci. 370, 244-250
126. Levin, H. S., Mattis, S., Ruff, R. M., Eisenberg, H. M., Marshall, L. F., Tabaddor, K., High, W. M., Jr., and Frankowski, R. F. (1987) Neurobehavioral outcome following minor head injury: a three-center study. J. Neurosurg. 66, 234-243
127. Eme, R. (2017) Neurobehavioral Outcomes of Mild Traumatic Brain Injury: A Mini Review. Brain Sci 7, 46
128. Pavlovic, D., Pekic, S., Stojanovic, M., Zivkovic, V., Djurovic, B., Jovanovic, V., Miljic, N., Medic-Stojanoska, M., Doknic, M., Miljic, D., Djurovic, M., Casanueva, F., and Popovic, V. (2010) Chronic cognitive sequelae after traumatic brain injury are not related to growth hormone deficiency in adults. Eur. J. Neurol. 17, 696-702
129. Mosavi, L. K., Minor, D. L., and Peng, Z.-y. (2002) Consensus-derived structural determinants of the ankyrin repeat motif. PNAS 99, 16029-16034
130. Mosavi, L. K., Cammett, T. J., Desrosiers, D. C., and Peng, Z. y. (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435-1448
131. Bork, P. (1993) Hundreds of ankyrin‐like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins: Structure, Function, and Bioinformatics 17, 363-374
132. Kunitomi, H., Kobayashi, Y., Wu, R.-C., Takeda, T., Tominaga, E., Banno, K., and Aoki, D. (2019) LAMC1 is a prognostic factor and a potential therapeutic target in endometrial cancer. J. Gynecol. Oncol. 31, e11
133. Hsu, L.-J., Schultz, L., Mattison, J., Lin, Y.-S., and Chang, N.-S. (2005) Cloning and characterization of a small-size peptide Zfra that regulates the cytotoxic function of tumor necrosis factor by interacting with JNK1. Biochem. Biophys. Res. Commun. 327, 415-423
134. Dudekula, S., Lee, M.-H., Hsu, L.-J., Chen, S.-J., and Chang, N.-S. (2010) Zfra is a small wizard in the mitochondrial apoptosis. Aging (Albany N. Y.) 2, 1023
135. Lee, M.-H., Su, W.-P., Wang, W.-J., Lin, S.-R., Lu, C.-Y., Chen, Y.-A., Chang, J.-Y., Huang, S.-S., Chou, P.-Y., and Ye, S.-R. (2015) Zfra activates memory Hyal-2+ CD3− CD19− spleen cells to block cancer growth, stemness, and metastasis in vivo. Oncotarget 6, 3737
136. Su, W.-P., Wang, W.-J., Sze, C.-I., and Chang, N.-S. (2016) Zfra induction of memory anticancer response via a novel immune cell. Oncoimmunology 5, e1213935
137. Majd, S., Power, J. H., and Grantham, H. J. (2015) Neuronal response in Alzheimer’s and Parkinson’s disease: the effect of toxic proteins on intracellular pathways. BMC Neurosci. 16, 1-13
138. Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L.-F., Kwon, H., Yi, S., Mucke, L., and Gan, L. (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem. 280, 40364-40374
139. Grilli, M., Goffi, F., Memo, M., and Spano, P. (1996) Interleukin-1β and glutamate activate the NF-κB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J. Biol. Chem. 271, 15002-15007
140. Lin, T.-W., Chen, S.-J., Huang, T.-Y., Chang, C.-Y., Chuang, J.-I., Wu, F.-S., Kuo, Y.-M., and Jen, C. J. (2012) Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiol. Learn. Mem. 97, 140-147
141. Yang, T.-T., Lo, C.-P., Tsai, P.-S., Wu, S.-Y., Wang, T.-F., Chen, Y.-W., Jiang-Shieh, Y.-F., and Kuo, Y.-M. (2015) Aging and exercise affect hippocampal neurogenesis via different mechanisms. PLoS One 10, e0132152
142. Chu, Y.-Y., Ko, C.-Y., Wang, W.-J., Wang, S.-M., Gean, P.-W., Kuo, Y.-M., and Wang, J.-M. (2016) Astrocytic CCAAT/Enhancer binding protein δ regulates neuronal viability and spatial learning ability via miR-135a. Mol. Neurobiol. 53, 4173-4188
143. Turner, P. R., O’Connor, K., Tate, W. P., and Abraham, W. C. (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70, 1-32
144. Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., and Herms, J. (2006) Synapse formation and function is modulated by the amyloid precursor protein. J. Neurosci. 26, 7212-7221
145. Hooper, N. (2005) Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Portland Press Ltd.
146. Ohnishi, S., and Takano, K. (2004) Amyloid fibrils from the viewpoint of protein folding. Cellular and Molecular Life Sciences CMLS 61, 511-524
147. Hernandez, F., and Avila, J. (2007) Tauopathies. Cell. Mol. Life Sci. 64, 2219-2233
148. Marvian, A. T., Koss, D. J., Aliakbari, F., Morshedi, D., and Outeiro, T. F. (2019) In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J. Neurochem. 150, 535-565
149. McConeghy, K. W., Hatton, J., Hughes, L., and Cook, A. M. (2012) A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26, 613-636
150. Gruenbaum, S. E., Zlotnik, A., Gruenbaum, B. F., Hersey, D., and Bilotta, F. (2016) Pharmacologic neuroprotection for functional outcomes after traumatic brain injury: a systematic review of the clinical literature. CNS Drugs 30, 791-806
151. Simon, D. W., McGeachy, M. J., Bayır, H., Clark, R. S., Loane, D. J., and Kochanek, P. M. (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nature Reviews Neurology 13, 171-191
152. Lippa, C. F., Fujiwara, H., Mann, D. M., Giasson, B., Baba, M., Schmidt, M. L., Nee, L. E., O'Connell, B., Pollen, D. A., and George-Hyslop, P. S. (1998) Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer's disease patients with mutations in presenilin and amyloid precursor protein genes. The American journal of pathology 153, 1365-1370
153. Hamilton, R. L. (2000) Lewy bodies in Alzheimer's disease: a neuropathological review of 145 cases using α‐synuclein Immunohistochemistry. Brain Pathol. 10, 378-384
154. Arai, Y., Yamazaki, M., Mori, O., Muramatsu, H., Asano, G., and Katayama, Y. (2001) α-Synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation. Brain Res. 888, 287-296
155. Tsigelny, I. F., Crews, L., Desplats, P., Shaked, G. M., Sharikov, Y., Mizuno, H., Spencer, B., Rockenstein, E., Trejo, M., and Platoshyn, O. (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases. PLoS One 3, e3135
156. Larson, M. E., Sherman, M. A., Greimel, S., Kuskowski, M., Schneider, J. A., Bennett, D. A., and Lesné, S. E. (2012) Soluble α-synuclein is a novel modulator of Alzheimer's disease pathophysiology. J. Neurosci. 32, 10253-10266
157. Larson, M. E., Greimel, S. J., Amar, F., LaCroix, M., Boyle, G., Sherman, M. A., Schley, H., Miel, C., Schneider, J. A., and Kayed, R. (2017) Selective lowering of synapsins induced by oligomeric α-synuclein exacerbates memory deficits. PNAS 114, E4648-E4657
158. Spencer, B., Desplats, P. A., Overk, C. R., Valera-Martin, E., Rissman, R. A., Wu, C., Mante, M., Adame, A., Florio, J., and Rockenstein, E. (2016) Reducing endogenous α-synuclein mitigates the degeneration of selective neuronal populations in an Alzheimer's disease transgenic mouse model. J. Neurosci. 36, 7971-7984
159. Khan, S. S., LaCroix, M., Boyle, G., Sherman, M. A., Brown, J. L., Amar, F., Aldaco, J., Lee, M. K., Bloom, G. S., and Lesné, S. E. (2018) Bidirectional modulation of Alzheimer phenotype by alpha-synuclein in mice and primary neurons. Acta Neuropathol. 136, 589-605
160. Moussaud, S., Jones, D. R., Moussaud-Lamodière, E. L., Delenclos, M., Ross, O. A., and McLean, P. J. (2014) Alpha-synuclein and tau: teammates in neurodegeneration? Mol. Neurodegener. 9, 43
161. Kawakami, F., Suzuki, M., Shimada, N., Kagiya, G., Ohta, E., Tamura, K., Maruyama, H., and Ichikawa, T. (2011) Stimulatory effect of α‐synuclein on the tau‐phosphorylation by GSK‐3β. The FEBS journal 278, 4895-4904
162. Mandal, P. K., Pettegrew, J. W., Masliah, E., Hamilton, R. L., and Mandal, R. (2006) Interaction between Aβ peptide and α synuclein: molecular mechanisms in overlapping pathology of Alzheimer’s and Parkinson’s in dementia with Lewy body disease. Neurochem. Res. 31, 1153-1162
163. Giasson, B. I., Forman, M. S., Higuchi, M., Golbe, L. I., Graves, C. L., Kotzbauer, P. T., Trojanowski, J. Q., and Lee, V. M.-Y. (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300, 636-640
164. Masliah, E., Rockenstein, E., Veinbergs, I., Sagara, Y., Mallory, M., Hashimoto, M., and Mucke, L. (2001) β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. PNAS 98, 12245-12250
165. Berge, G., Sando, S. B., Rongve, A., Aarsland, D., and White, L. R. (2014) Apolipoprotein E ε2 genotype delays onset of dementia with Lewy bodies in a Norwegian cohort. J. Neurol. Neurosurg. Psychiatry 85, 1227-1231
166. Ogaki, K., Martens, Y. A., Heckman, M. G., Koga, S., Labbé, C., Lorenzo‐Betancor, O., Wernick, A. I., Walton, R. L., Soto, A. I., and Vargas, E. R. (2018) Multiple system atrophy and apolipoprotein E. Mov. Disord. 33, 647-650
167. Benzinger, T. L., Karch, C. M., Fagan, A., Morris, J. C., and Bateman, R. J. (2018) The relevance of cerebrospinal fluid α-synuclein levels to sporadic and familial Alzheimer’s disease.
校內:2025-08-31公開