| 研究生: |
洪偉川 Hong, Wei_Chuan |
|---|---|
| 論文名稱: |
風切流場中之飛行軌跡與風場重建 Flight Path and Wind Field Reconstruction in Wind Shear Flow |
| 指導教授: |
陸鵬舉
Lu, Pong-Jeu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 飛行軌跡重建 、基因演算法 、微風暴 、風切 、兩步驟法 |
| 外文關鍵詞: | Microburst, Wind Shear Flow, Flight Path and Wind Field Reconstruction, Two-step Method, Genetic Algorithms |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採取依飛行器在空間的位置,透過微風暴(Microburst)風切流場的數學模型,取得當下的風場強度與方向以實現飛行狀態模擬,進而對飛行數據進行參數識別與狀態估測。在本研究中參考兩步驟法(Two-step Method)的概念,步驟一先對無風狀態下的機載數據進行相容性測試,估測出空速及攻角的偏差常數(Constant Bias Error)及偏差比例因子(Scale Factor Error),步驟二再進行風切流場分析以估測出風場,並進而估測出其他參數的偏差常數。本文採用兩步驟法並配合使用基因演算法(Genetic Algorithms)作為估測系統誤差參數的優化方法,並以擴展型卡氏濾波器(Extended Kalman Filter)估測系統狀態變數,以此來對亂流中的飛行數據進行參數識別與狀態估測,進而重建飛行軌跡及風切流場。本研究採用由最大可能性原理(Maximum Likelihood Principle)所推導的目標函數(Objective Function)作為優化目標,經由優化此目標函數以獲得系統誤差參數的最佳估測。在估算出系統誤差參數後,修正系統狀態方程式,將估算之狀態變數經時間積分重建飛行軌跡。本研究可看出基因演算法結合兩步驟法能夠成功的估測出的偏差常數及偏差比例因子,並重建出在遭遇風切流場中的飛行軌跡與所經歷的風場分佈。
The objective of this research is to reconstruct the wind field and the flight path for aircraft in wind shear flow encounter. Wind field experienced by the flying aircraft is generated by a microburst mathematical model and the aircraft position. Two-step method is introduced, in which the Genetic Algorithm is used in conjunction with the Extended Kalman Filter to identify the system error parameters and to estimate the state variables. The first-step identification uses flight data obtained in smooth air, whereas the second-step assumes the error factors associated with the air data are invariant when analyzing the flight data in turbulence. The objective function is derived using the Maximum Likelihood principle, and the system error parameters are obtained by optimizing this objective function. The use of Genetic Algorithm aims to solve the numerical stiffness and the initial guess problems associated with the gradient search methods. In this research a Boeing 747-100 airplane encountered with 3 different wind shear fields during approaching are simulated. The results of constant bias and scale factors estimated by the present Genetic Algorithm were satisfactory. The state variables and flight paths and the wind shear fields are successfully reconstructed, indicating the appropriateness of applying the present method to wind shear flight data analysis.
[1] 林沛達, “台灣地區飛航安全現況簡述,” 航空工業與飛航安全技術研習會,台南, 1998.
[2] Klein, V., “Estimation of Aircraft Aerodynamics Parameters from Flight Data,” Progress in Aerospace Sciences, Vol. 26, 1989, pp. 1-77.
[3] Iliff, K. W., “Parameter Estimation for Flight Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 12, No. 5, 1989, pp. 609-622.
[4] Laban, M., “On-Line Aircraft Aerodynamic Model Identification,” Proefschrift Technische Universiteit Delft.-Met Lit. Opg., 1994.
[5] Maine, R. E., and Iliff, K. W., “Application of Parameter Estimation to Aircraft Stability and Control,” NASA RP-1168, 1986.
[6] Stepner, D. E., and Mahra, R. K., “Maximum Likelihood Identification and Optimal Input Design for Identifying Aircraft stability and Control Derivatives,” NASA CR-2200, 1973.
[7] Qing Chen, and Yuan Lin, “Reconstruction of Flight Path in Turbulence,” Journal of Aircraft, Vol. 29, No. 4, July-Aug, 1992, pp. 527-531.
[8] 詹銘堯 “非線性飛行動力系統參數識別與飛行軌跡重建,” 國立成功大學航空太空工程研究所碩士論文, 1997.
[9] 徐伯熊 “基因演算於飛行軌跡重建之應用,” 國立成功大學航空太空工程研究所碩士論文, 1999.
[10] 謝昇蓉 “基因演算於亂流中飛行軌跡重建之應用,” 國立成功大學航空太空工程研究所碩士論文, 2000.
[11] Chu, Q. P., Mulder, J. A., and Van Woerkom P. T. L. M. “Modified Recursive Maximum Likelihood Adaptive Filter for Nonlinear Aircraft Flight-Path Reconstruction,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 6, 1996, pp. 1285-1295.
[12] Jategaonkar, R. V., and Pletschke, E., “Algorithms for Aircraft Parameter Estimation Accounting for Process and Measurement Noise,” Journal of Aircraft, Vol. 26, No. 4, 1989, pp. 360-372.
[13] Gen, M, and Cheng, R, Genetic Algorithms and Engineering Design, John Wiley, New York, 1997.
[14] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer-Verlag, New York, 1996.
[15] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.
[16] Peter F. Lester, Aviation Weather, Jeppesen Sanderson, Inc., 1995.
[17] 戚啟勳 “大氣科學,” 大中國圖書公司, 1993.
[18] 宛同, 朱永彰, “飛機在低空風切下之飛行軌跡分析,” 中國航空太空學會學刊, 第31卷, 第1期, 1999, pp. 1-10.
[19] Kahn. K.-U., “Effect of Wind Shear on Flight Safety,” Progress in Aerospace Sciences, Vol. 26, 1989.
[20] Fujita, T. T., “The Downburst”, SMRP Research paper 210, 1985, pp 122.
[21] M.T. Chay, F. Albermani, and H. Hawes, ”Wind Loads on Transmission Line Structures in Simulated Downbursts,” First World Congress on Asset Management, 2006
[22] McLean, D., Automatic Flight Control System, Prentice Hall Inc., 1990.
[23] Nelson, R. C., Flight Stability and Automatic Flight Control, McGraw-Hill Inc., 1989.
[24] Etkin, B., Dynamics of Flight Stability and Control, John Wiley & Sons, Inc., 1982.
[25] Jean-Luc Boiffier, The Dynamics of Flight The Equations, John Wiley & Sons Ltd, 1998.
[26] Brian L. Stevens, and Frank L. Lewis, Aircraft Control and Simulation, John Wiley & Sons, Inc., 1992.
[27] Maine, R. E., and Iliff, K. W., “Identification of Dynamic Systems,” AGARD AG-300, Vol.2, Jan. 1985.
[28] Holland, J. H., Concerning Efficient Adaptive Systems, In M. C. Yovits, G. T. Jacobi, and G. D. Goldstein (Eds.), Self-Organizing Systems, Washington: Spartan Books. 1962, pp.215-230.
[29] Holland, J. H., Information Processing in Adaptive Systems. Information Processing in the Nervous System: Proceedings of the International Union of Physiological Sciences, Vol. 3, 1962, pp.330-339.
[30] Holland, J. H., Outline for A Logical Theory of Adaptive Systems. Journal of the Association for Computer Machinery, Vol. 3, 1962, pp.297-314.
[31] Holland, J. H., Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The University of Michigan Press., 1975.
[32] Winter, G., Periaux, J., Galan, M., and Cuesta, P., Genetic Algorithms in Engineering and Computer Science, John Wiley, New York, 1996.