| 研究生: |
許晁瑋 Hsu, Chew-Wei |
|---|---|
| 論文名稱: |
以光激發濕式蝕刻技術研製氮化銦鎵系列金半金光檢測器 InGaN based MSM Photodetectors Fabricated by Photoenhanced Chemical Wet Etching Technique |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 氮化銦鎵 、金半金光檢測器 、凹槽式電極結構 、光激發濕式蝕刻技術 |
| 外文關鍵詞: | InxGa1-xN, PEC technique, MSM PDs, recessed electrode |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接寬能隙特性之III-V族化合物半導體如氮化鎵(GaN)、氮化銦(InN)等,廣泛應用於高亮度發光二極體、藍光雷射及太陽能電池等光電元件上。本研究中,以有機金屬氣相沉積(MOCVD)系統將氮化銦鎵(InxGa1-xN) (x=0.37,0.60及0.85)材料成長在藍寶石基板上,做為光檢測器的光吸收層。由於磊晶層間晶格缺陷導致光檢測器之光電特性不佳,因此本研究將在金半接面之間蒸鍍絕緣層或異質結構材料來改善光電特性; 另一方面,本研究以光激發濕式蝕刻技術(PEC etching)製作凹槽式電極結構來增加電場均勻性冀以提升元件特性。
第一階段研究結果顯示,因InxGa1-xN (x=0.37,0.60及0.85)材料磊晶品質不佳,致使金半金(MSM)結構光檢測器之暗電流偏高,且光電特性有待提升。因此,為降低暗電流特性,採取 Photo-CVD在InxGa1-xN表面成長絕緣層薄膜,製備金氧半 (MOS) 結構光檢測器元件。研究結果顯示,以Photo-CVD成長100 nm SiO2層的MOS元件與MSM結構相比更能提升光暗電流比達1.2~2.1倍,InxGa1-xN (x=0.37,0.60 及 0.85) 在偏壓3伏特時,MOS光檢測器之光暗電流比分別為6.7、10.7與49.7。由於光暗電流比之提升效果不佳,因此我們運用真空濺鍍方式在氮化銦鎵磊晶片上蒸鍍約100nm矽材料,製作金異半異質結構(hetrerojunction) 之光檢測器元件; 結果顯示,異質結構與金半金結構相比能夠更有效提昇光暗電流比達84.8~194.3倍;在偏壓為3伏特時,InxGa1-xN (x=0.37,0.60及0.85)異質結構光檢測器之光暗電流比分別為907.6、500.3與4583.8,且其響應波長值為470、640 及810 nm。此外,藉由蕭特基二極體之製備與量測,計算出蕭特基能障分別為0.92、0.76與0.69 eV。
第二部份,針對凹槽式電極結構應用於光檢測器之研究,凹槽式結構可以增強電場之均勻性來縮短光載子飄移到電極之時間與增加光載子之吸收量,進而提升元件效率。以光激發濕式蝕刻技術製備低蝕刻損害之凹槽式電極結構並可有效降低表面粗糙度達 31% 。研究結果顯示,與傳統平面式電極結構的金半金光檢測器相比,使用凹槽式電極結構更能夠提升光暗電流比達 55.8~94.4 倍,而與ICP乾式蝕刻技術相比則更能提升光暗電流比達2.66倍。 在偏壓3伏特時,InxGa1-xN( x=0.37,0.60及0.85 ) 凹槽式電極結構光檢測器之光暗流比分別為 480.6、228.8與2208.7。
Wild band gap material such as III-V compound are attracted in well electronic property of high chemical stability, high mobility, high thermal stability, and high breakdown voltage. The structure of InGaN based MSM photodetectors are epitaxied on sapphire substrate by MOCVD system. As result of the high lattice mismatch between InGaN and sapphire, the epitaxal quality is poor. Thus, the objective of this research is to design the appropriate device structure for InGaN based MSM, MOS, and heterojunction PDs to improve the device performance. On the other hand, InGaN based PDs with the recessed electrode is fabricated by PEC etching technique. Expectably, the device performance of recessed electrode PDs will be enhanced by the uniform electric field.
For the experiment one, the dark current of MSM PDs is very high due to the poor expitaxal quality. Then, InGaN based MOS PDs are fabricated in order to decrease the dark current. At a bias of 3 V, the photocurrent to dark current contrast ratio of InxGa1-xN (x=0.37, 0.60, and 0.85) is about 6.7, 10.7, and 47.9, respectively. However, the photocurrent to dark current contrast ratio of MOS PDs is only 1~2 times higher than MSM PDs that is due to the oxide layer decreases both of photocurrent and dark current in the meantime. Therefore, the thin SiO2 film is replaced with α-Si to enhance the photocurrent to dark current contrast ratio. For the Pt/α-Si /InxGa1-xN (x=0.37, 0.60, and 0.85) heterojunction PDs, the dark current is about 10-7 ~10-8 A, and the photocurrent to dark current contrast ratio is 84.8~194.3 times larger than MSM PDs, and the cut-off wavelength is 470, 640, and 810 nm, respectively. Then Schottky barrier height is measured about 0.92, 0.76, and 0.69 eV, respectively. The Pt/α-Si contact is confirmed to improve the performance of the InxGa1-xN (x=0.37, 0.60, 0.85) based heterojunction PDs.
For the experiment two, the recessed electrode MSM PDs is designed to enhance the device performance by the uniform electric field. The recessed electrode PDs is fabricated by the PEC etching technique, and the roughness of active layer is 31 % lower than as-grown material, which means the etching damage is low. For Pt/InxGa1-xN (x=0.37, 0.60, and 0.85) recessed electrode MSM PDs, the photocurrent to dark current contrast ratios are 480.6, 228.8, and 2208.7, respectively. It is found that the improvement of the photocurrent to dark current contrast ratios are 55.8~94.4 times higher for recessed electrode MSM PDs than planar MSM PDs. Compared with the ICP etching technique, it is found that the improvement of the photocurrent to dark current contrast ratio by PEC technique is 2.66 times higher than ICP process. Therefore, the design for recessed electrode MSM PDs by PEC etching is confirmed to enhance the device performance.
1-1. J. C. Carrano, T. Li, P. A. Grudowski, C .J. Eiting, and R. D. Dupuis, “Current transport mechanisms in GaN-based MSM photodetectors”, Appl. Phys. Lett., 72, 542, 1998
1-2. O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky UV detectors”, Appl. Phys. Lett., 79, 1417, 2001
1-3. Y. Narukawa, S. Nakamura, M. Senoh, and N. Iwasa, “Radiative and Nonradiative Recombination Processes in Ultraviolet Light-Emitting Diode Composed of an In0.02Ga0.98N Active Layer”, Appl. Phys. Lett., 74, 4, 1999
1-4. C. L. Wu, C. H. Shen, H. W. Lin, H. Y. Chen, and H. Ahn, “InN-on-Si heteroepitaxy: growth, optical properties, and applications”, Proc. SPIE., 6134, 613, 2006
1-5. S. Nakamura, M. Senoh, S. Nagahama, and T. Matsushita, “Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420mW”, Jpn. J.Appl. Phys., 37, 627,1998.
1-6. S. Nakamura, S. Nakamura, M. Senoh, S. Nagahama, and N. Iwasa, “Blue InGaN-based laser diodes with an emission wavelength of 450nm”, Appl. Phys. Lett.,76, 22, 1999.
1-7. O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors”, Appl. Phys .Lett., 69, 3872, 1996.
1-8. D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M.A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors”, Jpn. J. Appl.Phys., 83, 4, 1997.
1-9. D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamiton, and M.Razeghi, “ Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett., 72, 25, 1998
1-10. J. C. Carrano, T. Li, P. A. Grudowski, and C.J. Eiting, “Comprehensive characterization of MSM UV photodetectors fabricated on single-crystal GaN”, Jpn. J. Appl.Phys., 83, 6148, 1998
1-11. Y. Tian, S. J. Chua, and H. Wang, “Theoretical study of characteristics in GaN MSM photodetectors”, Soli. Stat. Electro.., 47,186, 2003.
1-12. K. Kato, “Ultrawide-band/high-Frequency photodetectors”, IEEE Trans. Micro. Theo. Tech., 47, 1265,1999
1-13. J. H. Burroughes, “H-MESFET compatible GaAs/AlGaAs MSM photodetector”, IEEE Photo. Tech. Lett., 3, 660, 1991.
1-14. T. Hashizume, “Capacitance-voltage characterization of AlN/GaN MSM structures grown on sapphire substrate by metalorganic chemical vapor deposition”, J. Appl. Phys. , 2000.
1-15 S. Imanaga, U. K. Mishra, and S. P. Denbaars, “Current-Voltage characteristics of AlN/GaN heterostructure metal insulator semiconductor diode”, Jpn. J. Appl. Phys., 40, 2001.
1-16. E. G. Brazel, “Direct observation of localized high current densities in GaN films”, Appl. Phys. Lett., 74, 1999.
1-17. S. M. Sze, “Semiconductor Devices Physics and Techmology”, 2nd ed., John Wiley and Sons, New Jersey, p.p. 355, 2002.
1-18. Q. Z. Liu, “Thermally stable PtSi Schottky contact on n-GaN”, Appl. Phys. Lett., 70, 1997
1-19. M. A. Khan, J. N. Kuznnia, A. R. Bhattarai, and K.T. Ilson, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett, 62, 1786, 1993
1-20. M. A. Khan, J. N. Kuznia, D. T. Olson, and M. S. Shur, “Microwave performance of a 0.25 micrometer gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett., 65, 1121, 1994
1-21. M. A. Khan, Q. Chen, M. S. Shur, and B. T. Dermott, “Short-channel GaN/AlGaN doped channel heterostructure field effect transistor”, Electro. Lett, 32, 357, 1996
1-22. J. K. Seo, J. W. Caneau, and C. Bhat, “Application of ITO with improved transmittance in MSM photodetectors”, Photo. Techol. Lett., 5, 11, 1995
1-23. W. Gao, A. Khan, and R. G. Zydzik, “ InGaAs metalsemiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts”, Appl. Phys. Lett., 65, 12, 1994
1-24. P. Pogossian, L. Vescan, and A. Vonsovici, “The singlemode condition for semiconductor rib waveguides with large cross section”, J. Light. Tech., 16, 10, 1998
1-25. F. Yuan, J. W. Shi, Z. Pei, and C. W. Liu, “MEXTRAM Modeling of Si/SiGe Heterojunction Phototransistors”, IEEE Trans. Elec. Devi., 51, 6, 2004
1-26. L. W. Ji, Y. K. Su, S. J. Chang, S. H. Liu, C. K. Wang, and S. T. Tsai, “InGaN quantum dot photodetectors”, Sol. Stat. Electro. ,47, 10, 2003
1-27. L. W. Ji, Y. K. Su, and S. J. Chang, “Characteristics of III-nitride MSM photodiodes with SAQDs”, J. Phy. Chem. Soli., 61, 8-9, 2006
1-28. H. C. Casey, G. G. Fountain, R. G. Alley, and B. P. Keller, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., 68, 1850, 1996
1-29. D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, and D. H. Shin, “GaN Metal–Oxide–Semiconductor Structures Using Ga-oxide Dielectrics Formed by Photoelectrochemical Oxidation”, Appl. Phys. Lett., 80, 2002
1-30. B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, “High-Quality Oxide/Nitride/Oxide Gate Insulator for GaN MIS Structures”, IEEE Trans. Elec. Devi., 48, 446, 2001
1-31. C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN”, Appl. Phys. Lett.,82, 24, 2003.
1-32. C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., 71, 13,1997.
1-33. T. Matsuoka, H. Okamoto, and M. Nakao, “Optical Bandgap Energy of Wurtzite InN”, Appl. Phys. Lett., 81, 7, 2002
2-1. H. Morkoc, “Nitride Semiconductors and Devices”, Springer, New York, pp196-205, 2004
2-2. S. M. Sze, “Semiconductor devices physics and technology 2nd” , John Wiley and Sons, New Jersey, pp339-355, 471-489, 2002
2-3. H. Norde, “A modified forword I-V plot for Schottky diodes with high series resistance”, J. Appl. Phys., 50, 5052, 1979
2-4. Y. D. Jhou, S. J. Chang,a Y. K. Su, and Y. Y. Lee,“ GaN based Schottky barrier doiodes with SiNbuffer layer”, Appl. Phys. Lett, 9, 121, 2007
2-5. P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, and S. L. Wu, “High-Detectivity Nitride-Based MSM Photodetectors on InGaN–GaN Multiquantum Well With the
Unactivated Mg-Doped GaN Layer”, IEEE J. Quan. Ele., 43, 11, 2007
2-6. N. C. Chen, P. H. Chang, Y. N. Wang, and H. C. Peng, “Schottky behavior at InN-GaN interface”, Appl. Phys. Lett., 87, 21, 2005
2-7. F. Schwier, and M. Polyakov, “Electron Transport in InN”, Appl. Phys. Lett ,84, 08, 2004
2-8. B. G. Streeman, “Solid state electronic devices”, 5th, Sanjay Banerjee, London, pp327~330, 2001
2-9. D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review”, Materi. Sci. Engin., 48, 29, 2005
2-10 T. Wolff , M. Rapp, and T. Rotter ,“Electrochemical Etching and CV-Profiling of GaN” , Phys. stat. sol., 201, 9, 2004
2-11. C. Youtsey and I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., 71, 2151, 1997
2-12. J. A. Bardwell, J. B. Webb, and H. Tang, “Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution”, J. Appl. Phys., 89, 7, 2001
2-13. J. M. Hwang, K. Y. Ho, Z. H. Hwang, W. H. Hung, K. M. Lau, and H. L. Hwang, “Efficient wet etching of GaN and p-GaN assisted with chopped UV source”, Superlat. & Micro., 35, 1-2, 2004.
2-14. I. M. Huygens, and W. P. GOMES, “Electrochemistry and Photoetching of n-GaN”, J. Ele. chem. Soc., 147, 5,2000
2-15. F. Wang, R. Zhang, X. Q. Xiu, K. L. Chen, S. L. Gu, B. Shen, Y. D. Zheng, and T. F. Kuech, “Investigation of dislocations and defects in epitaxial lateral overgrown GaN by photoelectrochemical wet etching”, Materi. Lett.”, 57, 8,1996.
2-16. B. Yang, and P. Fay, “Etch rate and surface morphology control in Photo-electrochemical etching of GaN”, J. Vac. Sci. Technol., 22, 2004
2-17. C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., 71, 13, 1997.
2-18. Y. C. Lim and R. A. Moore, “Properties of alternatively charged coplanar parallel strips by conformal mappings”, IEEE Trans. Ele. Devi., 15, 3,1968.
2-19. V. Zeghbroeck, W. Patrick, J. M. Halbout, and P. Vettiger, “105- GHz bandwidth metal-semiconductor-metal photodiode”, IEEE Elec. Devi. Lett., 9, 10, 1988.
2-20. N. Debbar, “Two-dimensional numerical simulation of metal-semiconductor-metal photodetector structures”, IEEE J. Quan. Ele., 28, 11, 2002.
2-21. J. H. Burroughes, D. L. Rogers, G. Arjavalingam, G. D. Pettit, and M. S. Goorsky, “Doping-induced bandwidth enhancement in metalsemiconductor-metal photodetectors,” IEEE Photon. Technol. Lett., 3, 7, 1991.
2-22. E. Greger, K. Reingruber, P. Riel, G. H. Dohler, J. Rosenzweig, and M. Ludwig, “Bandwidth enhanced metal-semiconductor-metal photodetectors based on backgated ip structures”, Appl. Phys. Lett., 9, 2, 1994.
2-23. J. I. Chyi, Y. J. Chien, R. H. Yuang, J. L. Shieh, J. W. Pan, and J. S. Chen, “Reduction of hole transit time in GaAs MSM photodetectors by p-type doping”, IEEE Photon. Technol. Lett., 8, 11, 1996.
2-24. R. H. Yuang, J. L. Shieh, J. I. Chyi, and J. S. Chen, “Overall Performance Improvement in GaAs MSM Photodetectors by Using Recessed-Cathode Structure”, IEEE Photo. Tech. Lett., 9, 2, 1997
2-25. R. H. Yuang and J. I. Chyi, “GaAs MSM Photodetectors with Recessed Anode and/or Cathode”, IEEE J. Quan. Elect., 34, 5, 1998
2-26. S. J. Chang, and Y. K. Su, “In0.37Ga0.63N Metal–Semiconductor–Metal Photodetectors With Recessed Electrodes”, IEEE Photo. Tech. Lett, 17, 4, 2005
2-27. C. L. Yu, C. H. Chen, S. J. Chang, Y. K. Su, S. C. Chen, and P. C. Chang, “In/sub 0.37/Ga/sub 0.63/N metal-semiconductor-metal photodetectors with recessed electrodes", IEEE Photo. Tech. Lett., 17,4, 2005
2-28. J. C. Carrano, T. Li, P. A. Grudowski and C. J. Eiting, “Comprehensive characterization of metal–semiconductor-metal UV PDs fabrication on single-crystal GaN”, J. Appl. Phys., 83, 6148, 1998
3-1. S. M. Sze, “Semiconductor devices physics and techmology” 2nd, John Wiely and Sons, New Jersey, pp471-589, 2002
3-2. M. A. Khan, Q. Chen, and M. S. Shur, “High-performance GaN/InGaN heterostructure FETs on Mg-doped GaNcurrent blocking layers” , Jour. Cryl. Grow., 272, 142, 2004
3-3. J. C. Lin, S. J. Chang, and Y. K. Su, “InN grown on GaN/sapphire templates at different emperatures by MOCVD”, Opti. Mater. Lett., 30, 201, 2007
4-1. H. Morkoc, “Nitride Semiconductors and Devices”, Springer, New York, pp196-205, 2004
4-2. J. C. Carrano, T. Li, P. A. Grudowski and C. J. Eiting, “ Comprehensive characterization of metal–semiconductor-metal UV PDs fabrication on single-crystal GaN”, J. Appl. Phys., 83, 6148, 1998
4-3. F. Schwier and M. Polyakov, “Electron Transport in InN”, Appl. Phys. Lett ,84, 08, 2004
4-4. M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, and Y. K. Su, “Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer”, Appl. Phys. Lett., 88, 2103, 2006
4-5. C. L. Wu, C. H. Shen, H. W. Lin, H. Y. Chen, and H. Ahn, “InN-on-Si heteroepitaxy: growth, optical properties, and applications”, Proc. SPI., 6134, 613, 2006
4-6. Y. Z. Chiou, S. J. Chang, and Y. K. Su “GaN metal-semiconductor interface and its applications in GaN and InGaN metalsemiconductor-metal photodetectors” IEE Proc. opt., 150, 41, 2003
4-7. Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen and J. K. Sheu, “GaN Metal-semiconductor-Metal UV sensors with various contact electrodes”, IEEE Sens. Jou., 2, 4, 2002
4-8. B. C. Hsu, C. H. Lin, P. S. Kuo, S. T. Chang, P. S. Chen, C. W. Liu, J. H. Lu, and C. H. Kuan, “Novel MIS Ge-Si Quantum-Dot Infrared Photodetectors”, IEEE Elec. Devi. Lett., 25, 8, 2004
4-9. C. F. Lin, C. W. Liu, M. J. Chen, M. H. Lee, and I. C. Lin, “Infrared Electroluminescence from Metal-Oxide-Semiconductor Structure on Silicon”, J. Phys. Cond. Matt., 12, 11, 2000
4-10. D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamiton, and M. Razeghi, “Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett., 72, 5,1998
4-11. E. J. Miller and E. T. Yu, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy”, Appl. Phys. Lett., 84, 4, 2004
4-12. J. K. Kim, H. W. Jang, and J. L. Lee, “ GaN MSM Ultraviolet photodetector with IrO2 Schottky contact”, Appl. Phys. Lett., 81, 24, 2002
4-13. C. C. Chu, Y. J. Chan, R. H. Yuang, and C. T. Lee, “Performance enhanced using WSi electrodes in InGaAs MSM PDs”, Elec. Lett., 31, 1692, 1995
4-14. L. S. Yu, and Q. Z. Liu, “Thermally stable PtSi Schottky contact on n-GaN”, Appl. Phys. Lett . , 70, 9,1997
4-15. O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., 79, 1417,2001
4-16. H. Norde, “A modified forword I-V plot for Schottky diodes with high series resistance”, J. Appl. Phys., 6, 1996
4-17. S. M. Sze, “Semiconductor devices physics and technology”, 2nd John Wiley and Sons, New Jersey, pp339-355, 2002
5-1. R. H. Yuang, J. L. Shieh, J. I. Chyi, and J. S. Chen, “Overall Performance Improvement in GaAs MSM Photodetectors by Using Recessed-Cathode Structure”, IEEE Photo. Tech. Lett., 9, 2, 1997
5-2. R. H. Yuang and J. I. Chyi, “GaAs MSM Photodetectors with Recessed Anode and/or Cathode”, IEEE J. Quan. Elect., 34, 5, 1998
5-3. S. J. Chang, and Y. K. Su, “In0.37Ga0.63N Metal–Semiconductor–Metal Photodetectors With Recessed Electrodes”, IEEE Photo. Tech. Lett, 17, 4, 2005
5-4. C. L. Yu, C. H. Chen, S. J. Chang, Y. K. Su, S.C. Chen,and P.C. Chang, “In/sub 0.37/Ga/sub 0.63/N metal-semiconductor-metal photodetectors with recessed electrodes”, IEEE Photo. Tech. Lett., 17,4, 2005
5-5. C. B. Vartuli and J. Wood, “Wet Chemical Etching of AlN and InAlN in KOH Solutions”, J. Elec. chem. Soc, 143, 11, 1996.
5-6. M. S. Minsky, M. White, and E. L. Hu, “Room-temperature photoenhanced wet
etching of GaN”, Appl. Phys. Lett., 68, 1532, 1996.
5-7. C. Youtsey, C. I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., 71, 2151, 1997.
5-8. T. Rotter, M. Heuken, and Y. Fu, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solution”, Appl. Phys. Lett., 76, 3923, 2000.
5-9. L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride”, Appl. Phys. Lett., 72, 939, 1998.
5-10. Y. Gao, “Optimization of AlGaN/GaN current aperture vertical electron transistor(CAVET) fabricated by photoeletrochemical wet etching”, Appl. Phys. Lett., 96, 121, 2004
5-11. C. Youtsey, I. Adesida, L. T. Romano, and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching”, Appl. Phys. Lett., 72, 560,1998.
5-12. C. Youtsey, I. Adesida, and G. Bulman, “Broad-area photoelectronchemical etching of GaN”, Electro Lett, 33, 245, 1997.
5-13. J. W. Yang, “Photoenhanced electrochemical etching for p-GaN”, Electro. Lett, 36, 204, 2000.
5-14. J. M. Hwang, K.Y. Ho, Z. H. Hwang, W. H. Hung , and K. M. Lau, “Efficient wet etching of GaN and p-GaN assisted with chopped UV source”, Mater. Sci. Engin., 35, 1-2,2005
5-15. T. Wolff, M. Rapp, and T. Rotter, “Electrochemical Etching and CV-Profiling of GaN”, Phys. stat. sol., 201, 2067, 2004
校內:2028-07-08公開