簡易檢索 / 詳目顯示

研究生: 陳含玉
Chen, Han-Yu
論文名稱: 銅-氯熱化學循環產氫方式的回顧及其新應用
Thermochemical Copper-Chlorine (Cu-Cl) Cycle for Hydrogen Production- A review and Its New Application
指導教授: 吳煒
wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 126
中文關鍵詞: 產氫銅-氯熱化學循環系統能源分析狹點分析銅-氯熱化學循環應用
外文關鍵詞: Hydrogen Production, Cu-Cl cycle, Pinch Analysis, Energy Efficiency.
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣的價值除了現階段最熱門氫能議題外,在傳統製造產業鏈上,亦是不可或缺的原料,因此氫氣的運用由於上述的理由可分為兩類:能源面向及原料面向。氫氣以能源面向探討時,需注意轉換能源的過程是否耗費過多的能量,在製造氫氣時,是否反而排放更多的二氧化碳,造成更嚴重的溫室效應;將氫氣視為次級能源以及一種電池的特性;而氫氣當作原料是由於製造業的需要,大部分消耗氫氣的製程是以哈柏法製備氨氣為主的上游端。
    產氫的方式有很多種,相比直接電解水耗電50~80kWh/kgH2,若銅-氯熱化學循環的熱能來源是無需計入的大量穩定熱能,且大於550度左右,以銅-氯熱化學循環產氫只需要19.7 kWh/kgH2,遠低於直接電解水之電力耗能。

    Several studies of Cu-Cl thermochemical cycle for hydrogen production by using the software Aspen Plus® are in this thesis. Many researches have examined the total energy efficiency of two systems, solar power plant and nuclear power with Cu-Cl thermochemical cycle, and have investigated the experiments of the several alternative processes. By the author, the energy efficiency of producing hydrogen through Cu-Cl thermochemical cycle in various-step are found to be the range 40% to 54%. Then, choose the minimum operating process to integrate with the hybrid power system, which is the power generation system combining in SOFC and GT, and present the pinch analysis. With the exhaust gas recirculation of the successful stand-alone CHP (combined heat and power) design, we generate the hydrogen in Cu-Cl thermochemical cycle through the CHP offers the heat and electricity. Finally, the case study of Cu-Cl thermochemical cycle yield 4380 kgH2/yr in maxium hydrogen production with 375 gCO2/kWh carbon emission power generation system.

    目錄 摘要 I Abstract II 誌謝 XII 目錄 XIII 圖目錄 XVII 表目錄 XXII 符號表 XXIV 第一章 緒論 1 1. 前言 1 1.1 氫氣視為能源載體(Energy Barrier) 2 1.1.1 氫能產出 4 1.1.2 氫能儲存 10 1.1.3 氫能應用 10 1.1.4 氫能結論 11 1.2 氫氣視為反應原料(Raw Material) 13 1.3 氫氣結論 15 第二章 熱化學循環 17 2.1 熱化學循環簡介 17 2.2 熱力學循環電力需求 21 2.3 熱化學循環熱源需求 23 2.4 熱化學循環之應用 24 2.4.1地熱能(Geothermal Energy) 24 2.4.2核能(Nuclear Power) 24 2.4.3垃圾燃燒(Incineration) 26 2.4.4太陽能(Solar Energy) 28 2.4.5化工廠(Chemical Plant) 32 2.5 熱化學循環總結 33 第三章 銅-氯熱化學循環建模分析 34 3.1 前言 34 3.2 銅-氯熱化學循環 35 3.2.1 銅-氯熱化學循環回顧 35 3.2.2 兩種電解實驗 37 3.2.3 熱力學建立 48 3.3 產氧反應器建模分析 51 3.3.1 壓力分析 53 3.3.2 產氧反應器產物分析──固液體 54 3.3.3 產氧反應器產物分析──氣體 55 3.3.4 模擬驗證 61 3.3.5 產物進料分析結論 64 3.4 銅-氯熱化學循環能源分析 66 3.4.1 前言 66 3.4.2 三至五步驟銅-氯熱化學循環 66 3.4.3 三至五步驟結果討論 76 3.4.4 能源運用結論 86 3.5 結論 89 第四章 熱電共生系統與銅-氯熱化學循環 90 4.1 研究動機 90 4.2 文獻回顧 91 4.2.1 銅-氯熱化學循環二步驟 91 4.2.2 獨立發電系統製程 95 4.3 系統整合 95 4.3.1 系統整合前言 95 4.3.2 系統整合-ALTC-3 Two Step 97 4.4 結果討論 98 4.4.1 結果討論:銅-氯熱化學循環 98 4.4.2 結果討論:系統整合 102 4.5 結論 114 附錄 銅-氯熱化學循環未來展望 115 附錄 圖 116 參考文獻 120

    參考文獻
    [1] Boyle, R. and R. Davis, Tracts Written by the Honourable Robert Boyle: Containing New Experiments, Touching the Relation Betwixt Flame and Air, and about Explosions, an Hydrostatical Discourse Occasion'd by Some Objections of Dr. Henry More Against Some Explications of New Experiments Made by the Author of These Tracts: to which is Annex't, An Hydrostatical Letter, Dilucidating an Experiment about a Way of Weighing Water in Water, New Experiments, of the Positive Or Relative Levity of Bodies Under Water, of the Air's Spring on Bodies Under Water, about the Differing Pressure of Heavy Solids and Fluids. 1976: Richard Davis.
    [2] Winter, M., Hydrogen: historical information. WebElements Ltd. Página visitada em, 2007. 4.
    [3] Musgrave, A., Why did oxygen supplant phlogiston? Research programs in the chemical revolution. Method Appraisal Phys. Sci, 1976: p. 181-209.
    [4] Cavendish, H., Three papers, containing experiments on factitious air, by the Hon. Henry Cavendish, FRS. Philosophical transactions, 1766. 56: p. 141-184.
    [5] Association, N.E.M., A chronological history of electrical development from 600 BC. 1946: National Electrical Manufacturers Association.
    [6] McCarthy, J. Hydrogen, 1995, Stanford University. Retrieved 14 March 2008.
    [7] Ogden, J.M., Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment, 1999. 24(1): p. 227-279.
    [8] Source: Renewable Energy Policy Network
    [9] Tzu-Yi Lai., Exergy Analysis, Optimal Design and Economic Evaluation of a Hydrogen Production System Using Cu-Cl Thermochemical Cycle. 2014, National Cheng Kung University report. Taiwan, R.O.C.
    [10] Haldane, J.B.S., Daedalus: Or, Science and the Future; a Paper Read to the Heretics, Cambridge, on February 4th, 1923. 1924: New York: Dutton.
    [11] Coalition-McKinsey, E., A portfolio of power-trains for Europe: a fact-based analysis—the role of battery electric vehicles, plug-in hybrids and fuel cell electric vehicles. Brussels, Belgium, 2010.
    [12] Øvergaard, S., Issue paper: Definition of primary and secondary energy. Statistics Norway, Oslo, 2008.
    [13] Fthenakis, V. and H.C. Kim, Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 2009. 13(6): p. 1465-1474.
    [14] McMurtry, R.Y. and C.M. Krogh, Diagnostic criteria for adverse health effects in the environs of wind turbines. JRSM open, 2014. 5(10): p. 2054270414554048.
    [15] 宋柏誼、邱莞仁,高美濕地旁造價5.7噸風力發電機倒6座,2015。
    Available at: http://udn.com/news/story/8478/1109616
    [16] Devabhaktuni, V., et al. Wind energy: trends and enabling technologies. in Proceedings of World Energy Congress, Montreal. 2010.
    [17] Kumar, Y., et al., Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 2016. 53: p. 209-224.
    [18] Drew, B., A. Plummer, and M.N. Sahinkaya, A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009. 223(8): p. 887-902.
    [19] Salvador, A., Energy: a historical perspective and 21st century forecast. 2005: American Association of Petroleum Geologists.
    [20] Source: Advanced Hardwood Biofuels Northwest
    Available at: http://hardwoodbiofuels.org/biomass-and-the-carbon-cycle/
    [21] Wright, L., et al., Biomass Energy Data Book, Volume 1. 2006.
    [22] Lund, J.W. and T.L. Boyd, Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016. 60: p. 66-93.
    [23] Philibert, C. and C. Philibert, Solar energy perspectives. 2011: International Energy Agency.
    [24] Yartys, V. and M. Lototsky, An overview of hydrogen storage methods, in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. 2004, Springer. p. 75-104.
    [25] 石心怡,氫混合燃料之燃燒特性與能源利用,長庚大學校訊第93期,2010。
    [26] 黃耀忠,從「小型天然氣重組製氫設備」談氫能設備的安全防護,台灣中油公司98年安全衛生觀摩研討會,2009。
    [27] Neikov, O.D., et al., Handbook of non-ferrous metal powders: technologies and applications. 2009: Elsevier.
    [28] Lindlar, H. and R. Dubuis, Palladium catalyst for partial reduction of acetylenes. Organic Syntheses, 1966: p. 89-89.
    [29] Appl, M., Ammonia. Ullmann's encyclopedia of industrial chemistry, 2006.
    [30] Patnaik, P., Handbook of inorganic chemicals. Vol. 28. 2003: McGraw-Hill New York.
    [31] Hsu, C.S. and P. Robinson, Practical advances in petroleum processing. Vol. 1. 2007: Springer Science & Business Media.
    [32] Sau, M., et al., Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions. Catalysis today, 2005. 109(1): p. 112-119.
    [33] Seth, D., et al., Selective hydrogenation of 1, 3-butadiene in mixture with isobutene on a Pd/α-alumina catalyst in a semi-batch reactor. Chemical engineering science, 2007. 62(17): p. 4544-4557.
    [34] SPI: The Plastic Industry Trade Association, 2015 Global Business Trends.Washington.
    [35] 黃郁棻,國研院科技政策中心,2014。
    Available at: http://portal.stpi.narl.org.tw/index/article/10189;jsessionid=71013578FA61228E6C86525134F8330F
    [36] Vinay Bhat, 2006.
    Available at: https://commons.wikimedia.org/wiki/File:Activation_energy.svg#filehistory
    [37] Abanades S, Charvin P, Flammant G, Nevenu P. (2005)."Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy"
    [38] Zoulias, E., et al., A review on water electrolysis. TCJST, 2004. 4(2): p. 41-71.
    [39] Maack, M., Generation, of the energy carrier HYDROGEN-In context with electricity buffering generation through fuel cells. Publicerad inom New Energy Externalities Developments for Sustainability (NEEDS), 2008.
    [40] Kromer, M., et al., Support for cost analyses on solar-driven high temperature thermochemical water-splitting cycles. TIAX, LLC, Report, 2011(D0535).
    [41] Balashov, V.N., et al., CuCl electrolysis for hydrogen production in the Cu–Cl thermochemical cycle. Journal of The Electrochemical Society, 2011. 158(3): p. B266-B275.
    [42] Yuksel, Y.E. and M. Ozturk, Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production. International Journal of Hydrogen Energy, 2016.
    [43] DoE, U. A technology roadmap for generation IV nuclear energy systems. in Nuclear Energy Research Advisory Committee and the Generation IV International Forum. 2002.
    [44] Rosen, M., et al., Nuclear‐based hydrogen production with a thermochemical copper–chlorine cycle and supercritical water reactor: equipment scale‐up and process simulation. International Journal of Energy Research, 2012. 36(4): p. 456-465.
    [45] Abram, T. and S. Ion, Generation-IV nuclear power: A review of the state of the science. Energy Policy, 2008. 36(12): p. 4323-4330.
    [46] Byun, Y., et al., Thermal Plasma Gasification of Municipal Solid Waste (MSW). 2012: INTECH Open Access Publisher.
    [47] Helsen, L. and A. Bosmans. Waste-to-Energy through thermochemical processes: matching waste with process. in 1 st International Symposium on Enhanced Landfill Mining, Houthalen-Helchteren. 2010.
    [48] Jäger, K., et al., Solar Energy-Fundamentals, Technology, and Systems. Delft University of Technology, 2014.
    [49] PHOENIX, A., CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013. 2013.
    [50] Roeb, M., et al., Materials-related aspects of thermochemical water and carbon dioxide splitting: a review. Materials, 2012. 5(11): p. 2015-2054.
    [51] Litwin, R.Z. and S.M. Pinkowski, Solar power for thermochemical production of hydrogen. 2010, Google Patents.
    [52] Xu, R. and T.F. Wiesner, Dynamic model of a solar thermochemical water-splitting reactor with integrated energy collection and storage. International Journal of Hydrogen Energy, 2012. 37(3): p. 2210-2223.
    [53] Reilly, T.J., Recuperative combustion system. 2011, Google Patents.
    [54] Dodds, P.E. and W. McDowall, A review of hydrogen production technologies for energy system models. UCL Energy Institute, University College London, 2012.
    [55] Serban, M., M. Lewis, and J. Basco. Kinetic study of the hydrogen and oxygen production reactions in the copper-chloride thermochemical cycle. in AIChE 2004 spring national meeting, New Orleans, LA. 2004.
    [56] Naterer, G., et al., Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu–Cl cycle. International Journal of Hydrogen Energy, 2009. 34(7): p. 2901-2917.
    [57] Masin, J.G., M.A. Lewis, and R. Vilim. Development of the low temperature hybrid Cu-Cl thermochemical cycle. in AIChE annual meeting, conference proceedings, Cincinnati, OH, United States. 2006.
    [58] Lewis, M. and S. Ahmed, Electrolyzer development in the Cu-Cl thermochemical cycle. FY 2013 Annual Progress Report, 2013.
    [59] Suppiah, S., et al. Study of the hybrid Cu-Cl cycle for nuclear hydrogen production. in Nuclear Production of Hydrogen: Proc. Third Information Exchange Meeting. 2006. OECD Publishing Oarai.
    [60] Lewis, M.A., M. Serban, and J.K. Basco, Hydrogen production at< 550 C using a low temperature thermochemical cycle, in Nuclear production of hydrogen. 2004.
    [61] Gabriel, K.S., Z. Wang, and G. Naterer, Production of hydrogen from water using a thermochemical copper-chlorine cycle. 2014, Google Patents.
    [62] N. Sathaiyan, V. Nandakumar, G. Sozhan et al., Hydrogen generation through cuprous chloride-hydrochloric acid electrolysis. international journal of energy and power engineering, 2015.
    [63] Baláž, P., Mechanochemistry in Nanoscience and Minerals Engineering. 2008, Springer, Berlin Heidelberg.
    [64] Chukwu, C., Process analysis and aspen plus simulation of nuclear-based hydrogen production with a copper-chlorine cycle. 2008, University of Ontario Institute of Technology.
    [65] Ferrandon, M.S., et al., Hydrogen production by the Cu–Cl thermochemical cycle: investigation of the key step of hydrolysing CuCl2 to Cu2OCl2and HCl using a spray reactor. international journal of hydrogen energy, 2010. 35(3): p. 992-1000.
    [66] Ferrandon, M.S., et al., Hydrolysis of CuCl2 in the Cu–Cl thermochemical cycle for hydrogen production: experimental studies using a spray reactor with an ultrasonic atomizer. international journal of hydrogen energy, 2010. 35(5): p. 1895-1904.
    [67] Naterer, G., et al., Clean hydrogen production with the Cu–Cl cycle–progress of international consortium, I: experimental unit operations. international journal of hydrogen energy, 2011. 36(24): p. 15472-15485.
    [68] Lewis, M., R&D status for the Cu-Cl thermochemical cycle. Argonne National Laboratory, 2009.
    [69] Yan, X.L., et al., Nuclear hydrogen production, in Nuclear Hydrogen Production Handbook. 2011, CRC Press. p. 47-80.
    [70] Leitner, J., et al., Heat capacity of CuO in the temperature range of 298.15–1300 K. Thermochimica Acta, 2000. 348(1): p. 49-51.
    [71] Amrute, A.P., Deacon chemistry revisited: new catalysts for chlorine recycling. 2013, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 21521, 2013.
    [72] SEKI, K., et al., The Development of Improved Hydrogen Chloride Oxidation Process.
    [73] Nanda, A. and D. Ulrichson, The kinetics of the reverse deacon reaction. International journal of hydrogen energy, 1988. 13(2): p. 67-76.
    [74] Ulrichson, D. and Y.-S. Yeh, Thermochemical water splitting: the reverse deacon reaction and alternatives. 1975, Ames Lab., Iowa (USA).
    [75] Wattimena, F. and W. Sachtler, Catalyst research for the shell chlorine process. Studies in Surface Science and Catalysis, 1981. 7: p. 816-827.
    [76] Mapamba, L.S., Simulation of the copper–chlorine thermochemical cycle/Mapamba, LS. 2011, North-West University.
    [77] Orhan, M.F., İ. Dinçer, and M.A. Rosen, Efficiency comparison of various design schemes for copper–chlorine (Cu–Cl) hydrogen production processes using Aspen Plus software. Energy Conversion and Management, 2012. 63: p. 70-86.
    [78] Chaubey, R., et al., A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 2013. 23: p. 443-462.
    [79] Dokiya, M. and Y. Kotera, Hybrid cycle with electrolysis using Cu- Cl system. International Journal of Hydrogen Energy, 1976. 1(2): p. 117-121.
    [80] Shin-An, Chen, Design and Control of Stand-alone Combined Heat and Power Systems Using CO2/CH4. 2016, National Cheng Kung University report. Taiwan, R.O.C.

    下載圖示 校內:2021-07-13公開
    校外:2021-07-13公開
    QR CODE