| 研究生: |
劉品秀 Liou, Pin-Siou |
|---|---|
| 論文名稱: |
CD133+或CD34+肝癌幹細胞受到登革病毒感染的特性分析 Characterizations of CD133+ or CD34+ liver cancer stem cells during dengue virus infection |
| 指導教授: |
彭貴春
Perng, Guey-Chuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 肝癌 、癌幹細胞 、登革病毒 |
| 外文關鍵詞: | hepatocellular carcinoma, cancer stem cell, dengue virus, permissive cells |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌是目前全世界發生率高且具有致命性的癌症之一,雖然已經有多種不同的方式能夠應用於肝癌的治療,但是治療後高復發的情況仍然沒辦法被解決,由於癌幹細胞有生成腫瘤的能力並且對於某些化療藥物有抗藥性,在癌症治療之中根除癌幹細胞是有困難的,因此癌幹細胞與癌症的復發及轉移具有密切的相關性。先前研究指出登革病毒感染骨髓之中的造血幹細胞會影響細胞的分化,由於癌幹細胞具有和造血幹細胞相似的特性(例如:自我更新以及分化的功能),再加上我們先前的實驗證實肝癌腫瘤組織中帶有CD133標誌的癌幹細胞確實能夠被登革病毒感染,因此本篇研究我們假設肝癌細胞株HepG2中的癌幹細胞應該也能被登革病毒感染,並且病毒的感染可能也會對這些癌幹細胞造成一些影響,主要著重於探討肝癌細胞株HepG2中帶有CD133和CD34標誌的肝癌幹細胞受到感染後細胞族群以及功能上是否產生變化,此外也想了解肝癌幹細胞受登革病毒感染後是否能繼續存活,讓病毒持續存在其中複製,利用癌幹細胞不斷產生具有感染力的新病毒。首先我們先確認肝癌細胞株HepG2能夠被登革病毒感染,並確定此細胞株中包含帶有CD133和CD34標誌的肝癌幹細胞,且帶有CD133標誌的肝癌幹細胞族群比例非常高,接著我們從HepG2細胞中分選出帶有CD133或CD34標誌的細胞並確認這兩種癌幹細胞皆能被登革病毒感染,我們也發現登革病毒的感染會造成癌幹細胞族群的變化,帶有CD133和CD34標誌的細胞受到感染之後比例會減少,且當帶有CD133標誌的細胞族群較少時,帶有CD34標誌的細胞可能會轉變成帶有CD133標誌的細胞,因此HepG2細胞中帶有CD133標誌的細胞族群比例高低與登革病毒感染後產生的病毒量沒有顯著的相關性,接著我們想了解癌幹細胞族群的變動是否和細胞凋亡有關係,因此在感染後不同時間點利用Annexin V染色觀察細胞凋亡的情形以及紀錄細胞存活的比例,結果顯示登革病毒感染並不會促進帶有CD133標誌的細胞產生細胞凋亡,且受感染後存活的細胞增加,然而帶有CD34標誌的細胞雖然有一部份會走向細胞凋亡,但是存活的部份我們推測可能可以轉變成帶有CD133標誌的細胞,此外我們也證實登革病毒感染之後存活的癌幹細胞能夠讓病毒在其中繼續複製,產生更多具有感染力的病毒,最後藉由電子顯微鏡的觀察我們發現登革病毒感染進入帶有CD133標誌的癌幹細胞時可能會被包裹到單層模的囊泡中,並且病毒顆粒可能透過出芽(budding)的方式離開受感染的細胞,產生型態大小不一的非典型登革病毒顆粒,另外我們也觀察到細胞的狀態在感染36小時後和感染12小時及24小時相比有恢復的情況,這個現象支持了我們先前的推測,登革病毒能夠存在在帶有CD133標誌的細胞中不斷的複製且不會促進細胞凋亡發生。綜合上述實驗,我們發現登革病毒能夠感染HepG2細胞中帶有CD133和CD34標誌的癌幹細胞,並且感染之後會造成幹細胞族群的改變,實驗結果證實帶有CD133標誌的細胞受到登革病毒感染之後能夠繼續存活,病毒也能持續存在細胞中複製,此外當登革病毒感染帶有CD133標誌的肝癌幹細胞時可能會被包裹到單層膜囊泡中,且新的病毒顆粒可能藉由出芽的方式釋放,我們也推測或許此種方式讓帶有CD133標誌的細胞受感染後得以繼續存活,因此我們認為肝癌之中帶有CD133標誌的細胞對於登革病毒的感染以及複製扮演重要的角色。
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers in the world. Although different therapies have already been used to treat HCC, the high recurrence rate remains a big challenge. Relapse and metastasis of HCC are intimately related to cancer stem cells (CSCs), which are tumorgenic and show resistance to chemotherapy. Previous studies have demonstrated that dengue virus (DENV) infection can affect the differentiation of hematopoietic progenitor cells (HPCs) in bone marrow (BM). CSCs possess similar biological properties of HPCs, such as self-renewal and differentiation. Furthermore, previous study revealed that CD133+ cells sorted out from HCC tumor tissue were highly permissive to DENV infection and yet the sustainability of CD133+ cells infected by DENV remains to be explored. CD133+ CSCs of HCC cell line (HepG2 cells) were utilized to investigate the characteristics of CD133+ cells after DENV infection. Stem cell populations in HepG2 cells were quantified by FACS. Biological functions, morphologies of cells and viral particles in sorted stem cells were performed by colony forming unit assay (CFU), tumor sphere formation assay, and transmission electron microscopy (TEM). Results confirmed that HepG2 cells were infectable by DENV, and contained high percentage of CD133+ population. Sorted CD133+ cells from HepG2 cells were permissive to DENV infection, so did sorted CD34+ cells. Interestingly, the properties of stem cells were altered after DENV infection; sustainable for DENV infection in sorted CD133+ or decreased number of cells in CD34+ cells, and DENV infected CD34+ cells were capable of transforming to CD133+ cells. As such, the levels of CD133+ cells in HepG2 cells were not proportionally correlated to viral titers in HepG2 cells. Annexin V staining for live cells revealed that DENV infected CD34+ cells resulted in apoptosis, while apoptosis was not observed in infected CD133+ cells, and the percentage of live CD133+ cells was increased after DENV infection. Moreover, sorted CD133+ cells from 2-day DENV infected cells could produce infectious DENV after re-culturing in fresh media. TEM investigations indicated that multiple DENV may be packaged inside a vesicle-like structure in infected CD133+ cells. Unconventional viral particles in various sizes were budded out from the infected CD133+ cells. Images also showed that the morphology of CD133+ stem cells recovered at 36 hours post infection, suggesting that DENV might be able to get along with CD133+ cells after infection. Cumulative data showed that CD133+ or CD34+ stem cells in HepG2 were permissive to DENV infection, and the infection may alter population of these stem cells. CD133+ cells could survive after DENV infection and support continuous viral replication. In infected CD133+ cells, DENV may be packaged inside monolayer vesicles and the viral particles might bud out from the cell membrane without killing the cells. In conclusion, CD133+ cells could not only sustain DENV infection but also be a reservoir for propagation of the virus, suggesting that these cells play an important role in supporting DENV replication in HCC.
Venook, A.P., et al. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. The oncologist 15 suppl 4, 5-13 (2010).
2. El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264-1273. e1261 (2012).
3. Nishikawa, H., et al. Non-B, non-C hepatocellular carcinoma (review). International journal of oncology 43, 1333-1342 (2013).
4. El-Serag, H.B., et al. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134, 1752-1763 (2008).
5. Reichl, P., et al. Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: an update for clinicians (review). Oncology reports 36, 613-625 (2016).
6. de Lope, C.R., et al. Management of HCC. Journal of hepatology 56 suppl 1, S75-87 (2012).
7. Imamura, H., et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. Journal of hepatology 38, 200-207 (2003).
8. Lacaze, L., et al. Surgical treatment of intra hepatic recurrence of hepatocellular carcinoma. World journal of hepatology 7, 1755-1760 (2015).
9. Mazzaferro, V., et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. The New England journal of medicine 334, 693-699 (1996).
10. Belghiti, J., et al. Liver resection and transplantation in hepatocellular carcinoma. Liver cancer 1, 71-82 (2012).
11. Soltysova, A., et al. Cancer stem cells. Neoplasma 52, 435-440 (2005).
12. Alison, M.R., et al. Stem cells and cancer: a deadly mix. Cell and tissue research 331, 109-124 (2008).
13. Reya, T., et al. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111 (2001).
14. Wu, X.Z. Origin of cancer stem cells: the role of self-renewal and differentiation. Annals of surgical oncology 15, 407-414 (2008).
15. Dawood, S., et al. Cancer stem cells: implications for cancer therapy. Oncology (Williston Park, N.Y.) 28, 1101-1107, 1110 (2014).
16. Beachy, P.A., et al. Tissue repair and stem cell renewal in carcinogenesis. Nature 432, 324-331 (2004).
17. Clarke, M.F. Epigenetic regulation of normal and cancer stem cells. Annals of the New York academy of sciences 1044, 90-93 (2005).
18. Alison, M.R., et al. Cancer stem cells: problems for therapy? The journal of pathology 223, 147-161 (2011).
19. Guo, Z., et al. Cancer stem cell markers correlate with early recurrence and survival in hepatocellular carcinoma. World journal of gastroenterology 20, 2098-2106 (2014).
20. Ji, J., et al. Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Seminars in oncology 39, 461-472 (2012).
21. Song, K., et al. Dysregulation of signaling pathways and putative biomarkers in liver cancer stem cells (Review). Oncology reports 29, 3-12 (2013).
22. Qiu, L., et al. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncology letters 15, 2039-2048 (2018).
23. Burkert, J., et al. Stem cells and cancer: an intimate relationship. The journal of pathology 209, 287-297 (2006).
24. Park, S.C., et al. Identification of cancer stem cell subpopulations of CD34(+) PLC/PRF/5 that result in three types of human liver carcinomas. Stem cells and development 24, 1008-1021 (2015).
25. Sun, J.H., et al. Liver cancer stem cell markers: progression and therapeutic implications. World journal of gastroenterology 22, 3547-3557 (2016).
26. Petersen, B.E., et al. Bone marrow as a potential source of hepatic oval cells. Science (New York, N.Y.) 284, 1168-1170 (1999).
27. Theise, N.D., et al. Liver from bone marrow in humans. Hepatology (Baltimore, Md.) 32, 11-16 (2000).
28. Suetsugu, A., et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochemical and biophysical research communications 351, 820-824 (2006).
29. Yin, S., et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International journal of cancer 120, 1444-1450 (2007).
30. Ma, S., et al. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27, 1749-1758 (2008).
31. Li, Z. CD133: a stem cell biomarker and beyond. Experimental hematology & oncology 2, 17 (2013).
32. Lan, X., et al. CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. International journal of molecular medicine 31, 315-324 (2013).
33. Piao, L.S., et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer letters 315, 129-137 (2012).
34. Kimura, H., et al. Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry. Liver 18, 14-19 (1998).
35. Paschoal, J.P., et al. Microvascular density of regenerative nodule to small hepatocellular carcinoma by automated analysis using CD105 and CD34 immunoexpression. BMC cancer 14, 72 (2014).
36. Cui, S., et al. Enhanced CD34 expression of sinusoid-like vascular endothelial cells in hepatocellular carcinoma. Pathology international 46, 751-756 (1996).
37. Tsuji, N., et al. CD34 expression in noncancerous liver tissue predicts multicentric recurrence of hepatocellular carcinoma. Digestive diseases (Basel, Switzerland) 31, 467-471 (2013).
38. Zhang, Q., et al. CD147, MMP-2, MMP-9 and MVD-CD34 are significant predictors of recurrence after liver transplantation in hepatocellular carcinoma patients. Cancer biology & therapy 5, 808-814 (2006).
39. Yan, W.W., et al. Expressions of CD34 and CD117 in human hepatocellular carcinomas and the clinical significance. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology 19, 588-593 (2011).
40. Luo, Q., et al. Leukemia inhibitory factor receptor is a novel immunomarker in distinction of well-differentiated HCC from dysplastic nodules. Oncotarget 6, 6989-6999 (2015).
41. Screaton, G., et al. New insights into the immunopathology and control of dengue virus infection. Nature reviews. Immunology 15, 745-759 (2015).
42. Gubler, D.J. Dengue and dengue hemorrhagic fever. Clinical microbiology reviews 11, 480-496 (1998).
43. Kyle, J.L., et al. Annual review of microbiology 62, 71-92 (2008).
44. Swaminathan, S., et al. Dengue: recent advances in biology and current status of translational research. Current molecular medicine 9, 152-173 (2009).
45. Tsai, J.J., et al. The importance of hematopoietic progenitor cells in dengue. Therapeutic advances in hematology 3, 59-71 (2012).
46. Noisakran, S., et al. Infection of bone marrow cells by dengue virus in vivo. Experimental hematology 40, 250-259. e254 (2012).
47. Perng, G.C. Role of bone marrow in pathogenesis of viral infections. Journal of bone marrow research 1, 104 (2012).
48. Lin, S.F., et al. Hematological aspects of dengue fever. Gaoxiong yi xue ke xue za zhi = The Kaohsiung journal of medical sciences 5, 12-16 (1989).
49. Couvelard, A., et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Human pathology 30, 1106-1110 (1999).
50. Povoa, T.F., et al. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PloS one 9, e83386 (2014).
51. Pagliari, C., et al. Immunopathogenesis of dengue hemorrhagic fever: contribution to the study of human liver lesions. Journal of medical virology 86, 1193-1197 (2014).
52. Suksanpaisan, L., et al. Infection of human primary hepatocytes with dengue virus serotype 2. Journal of medical virology 79, 300-307 (2007).
53. Sakinah, S., et al. Impact of dengue virus (serotype DENV-2) infection on liver of BALB/c mice: a histopathological analysis. Tissue & cell 49, 86-94 (2017).
54. Paes, M.V., et al. Hepatic damage associated with dengue-2 virus replication in liver cells of BALB/c mice. Laboratory investigation; a journal of technical methods and pathology 89, 1140-1151 (2009).
55. Lin, Y.L., et al. Infection of five human liver cell lines by dengue-2 virus. Journal of medical virology 60, 425-431 (2000).
56. Lang, J., et al. Modeling Dengue virus-hepatic cell interactions using human pluripotent stem cell-derived hepatocyte-like cells. Stem cell reports 7, 341-354 (2016).
57. Zhu, Z., et al. Zika virus has oncolytic activity against glioblastoma stem cells. Neurosurgery 82, E113-E114 (2018).
58. Chen, Q., et al. Treatment of human glioblastoma with a live attenuated Zika virus vaccine candidate. MBio 9, e01683-18 (2018).
59. Yauch, L.E., et al. Dengue virus vaccine development. Advances in virus research 88, 315-372 (2014).
60. Wegman-Points, L.J., et al. Retroviral-infection increases tumorigenic potential of MDA-MB-231 breast carcinoma cells by expanding an aldehyde dehydrogenase (ALDH1) positive stem-cell like population. Redox biology 2, 847-854 (2014).
61. Zhang, M., et al. Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma. Cancer 120, 992-1001 (2014).
62. Campbell, R.A., et al. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 133, 2013-2026 (2019).
63. Carlin, A.F., et al. An IRF-3-, IRF-5-, and IRF-7-independent pathway of Dengue viral resistance utilizes IRF-1 to stimulate type I and II interferon responses. Cell reports 21, 1600-1612 (2017).
64. Webster, B., et al. Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses. 7, e34273 (2018).
65. Dando, I., et al. Antioxidant mechanisms and ROS-related microRNAs in cancer stem cells. 2015, 425708 (2015).
66. Chen, T.H., et al. Antioxidant defense is one of the mechanisms by which mosquito cells survive dengue 2 viral infection. Virology 410, 410-417 (2011).
67. Okamoto, T., et al. Regulation of apoptosis during flavivirus infection. Viruses 9, E243 (2017).
68. Mathieu, J., et al. Regulation of stem cell populations by microRNAs. Advances in experimental medicine and biology 786, 329-351 (2013).
69. Rabelo, K., et al. The effect of the dengue non-structural 1 protein expression over the HepG2 cell proteins in a proteomic approach. Journal of proteomics 152, 339-354 (2017).
70. Ekkapongpisit, M., et al. cDNA-AFLP analysis of differential gene expression in human hepatoma cells (HepG2) upon dengue virus infection. Journal of medical virology 79, 552-561 (2007).
71. Ariff, I.M., et al. Japanese encephalitis virus infection alters both neuronal and astrocytic differentiation of neural stem/progenitor cells. Journal of neuroimmune pharmacology : the official journal of the society on neuroimmune pharmacology 8, 664-676 (2013).
72. Ma, S., et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132, 2542-2556 (2007).
73. Qiu, G.H., et al. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 67, 1-12 (2015).
校內:2024-12-31公開