| 研究生: |
盧艾偉 Lu, Ai-wei |
|---|---|
| 論文名稱: |
應用等位函數法模擬潰壩時自由液面及流場的演變 Simulation of The Free Surface and Flow Fields Induced by Dam Breaking Using Level Set Method |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 等位函數法 、碎波 、邊界層 、潰壩 、渦流 |
| 外文關鍵詞: | level set method, moving wall problem, wave breaking, vortex, boundary layer |
| 相關次數: | 點閱:104 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨發展二維數值黏性造波水槽,用以模擬平板移動過程與水體的相對關係。為模擬真實流體的運動情形,本模式擬求解非穩態Reynolds Averaged Navier-Stokes (RANS) 方程與紊流模式(k-e model),並採用質點等位函數法追蹤波浪碎波時複雜自由液面的變化情形。本文經數值實驗測試(Zalesak’s problem、Moving wall problem),得到不錯的結果,證明本數值模式的準確性。在確認模式的準確性後,為了解碎波流場的運動特性,本文藉由平板移動問題,探討碎波區域自由液面變化、流場特性以及邊界層內水平與垂直速度運動特性與剪應力變化關係。本文數值結果顯示,當平板移動速度增加時,在碎波區域會因為受到碎波水體拍擊自由液面影響,產生一順時針方向渦流。從邊界層垂直流速剖面可發現,波浪發生碎波時,邊界層內的流體會有向上運動的趨勢,而平板移動的過程中,對底床邊界層流場所造成的影響範圍,隨著平板加速度的增加而減少。
In this study numerical model was developed to solve the unsteady two-dimensional Reynolds Averaged Navier-Stokes (RANS) equation and the turbulent k-e equations for simulating the evolution of breaking water surface generated by a moving plate. A hybrid particle level set method was adopted to capture the complex free surface evolution, beginning from the steepening of the wave profile to the wave breaking. Accuracy of the numerical model was confirmed by solving the Zalesak problem and moving wall problem. After having verified the accuracy of the present numerical scheme, evolution of the overturning waves generated by a moving plate and the associated flow fields and velocity profiles within the bottom boundary layer have been revealed to details. Our numerical simulation shows that as the speed of the plate increases, due to the reattachment of the splash-up, a clockwise vortex is formed in the flow. Furthermore, when wave breaking occurs, the fluid particles within the bottom boundary layer show a tendency to move upward.
1.Amsden, A. A. and F. H. Harlow, The SMAC method: a numerical technique for calculating incompressible fluid flow, Los Alamos Scientific Laboratory, Report LA-4370, 1970
2.Adalsteinsson, D. and J. A. Sethian, The fast construction of extension velocities in level set methods, Journal of Computational Physics, Vol. 148, pp. 2-22,1999
3.Brufau, P. and P. Garca-Navarro, Two-dimensional dam-break flow simulation, Methods Fluids, Vol. 33, pp. 35–57, 2000
4.Chan, R. K-C. and R. L. Street, A computer study of finite amplitude water waves, Journal of Computational Physics, Vol. 6, pp. 68-94, 1971
5.Chen, C.J. and H. C. Chen, The finite-analytic method, Iowa Institute of Hydraulic Research, The University of Iowa, ,II HR Report 232- IV., 1982
6.Chen, H. C. and V. C. Patel, Laminar flow at the trailing edge of a flat plate, AIAAJ., Vol.25, pp. 920-928, 1987.
7.Dong C.M., H. C. Huang and C. J. Huang, Generation and propagation of cnoidal waves in a numerical wave tank, Journal of Coastal and Ocean Engineering, Vol. 5(1), pp. 13-30, 2005
8.Enright, D., R. Fedkiw , F. Ferziger and I. Mitchell, A hybrid particle level set method for improved interface capturing, Journal of Computational Physics, Vol. 183, pp. 88-116, 2002
9.Fraccarollo, L., and E. F. Toro, Experimental and numerical assessment of the shallow water model for two-dimensional dam-break problems, Journal of hydraulic research, Vol. 33, pp. 843–864, 1995
10.Harlow, F.H. and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, Vol. 8, pp. 2182-2189, 1965
11.Hirt, C. W. and B. D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, Journal of. Computational Physics, Vol. 39, pp. 201-225, 1981
12.Huang, C.J. and C. M. Dong, On the interaction of a solitary wave and a submerged dike, Coastal Engineering, Vol. 43, pp. 265-286, 2001
13.Jiang, G. and C. W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, Vol. 126, pp. 202-228, 1996
14.Kosorin, K., Hydraulic characteristics of some dam-break wave singularities, Proc., 20th IAHR congress, Int. Assoc. for Hydraulic Research, Delft, The Netherlands, 520–528, 1983.
15.Kim, S. O. and H. C. No, Second-order model for free surface convection and interface reconstruction, International Journal of Numerical Methods in Fluids, Vol. 26, pp 79-100, 1998
16.Launder, BE and D. B Spalding, The numerical computation of turbulence flows, Computer Methods In Applied Mechanics And Engineering, Vol. 3, pp. 269-289, 1974
17.Launder, B. E. and B. I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138, 1989
18.Lin, P. and P. L.-F Liu, A numerical study of breaking waves in the surf zone, Journal of Fluid Mechanics, Vol. 359, pp. 239-264, 1998
19.Lin, C and H. H. Hwung, Observation and measurement of the bottom boundary layer flow in the prebreaking zone of shoaling waves, Ocean Engineering, Vol.29, pp. 1479- 1502, 2002
20.Li, Y. and F. Raichlen, Energy balance model for breaking solitary wave runup, Journal of Waterway, port, Coastal and Ocean Engineering, Vol. 129, pp.47-59, 2003
21.Miyata, H. and S. Nishimura, Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration, Journal of Computational Physics, Vol. 60, pp. 391-436, 1985
22.Mohapatra, P. K., V. Eswaran and S.M. Bhallamudi, Two-dimensional analysis of dam-break flow in vertical plane, Journal of Hydrologic Engineering, ASCE 125 (2) 183–192, 1999
23.Osher, S. and J. Sethian, Front propagation with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, Journal of Computational Physics, Vol. 79, pp. 12-49, 1988
24.Peng, D., B. Merriman , S. Osher, H. Zhao, and M. Kang, A PDE-baed fast local level set method, Journal of Computational Physics, Vol. 155, pp. 410-438, 1999
25.Patankar, S.V., A calculation procedure for two-dimensional elliptic situations, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1979
26.Ritter, A., The propagation of water waves, Ver Deutsch ingenieur zeitschr, 36, Pt. 3, No. 33, pp. 947–954, 1892
27.Stoker, J. J., Water waves, Interscience
Publishers, pp. 291–341, 1957
28.Tang, C. J., V. C. Patel and L. Landweber, Viscous effects on propagation and reflection of solitary waves in shallow channels, Journal of Computational Physics, Vol. 88, No. 1, pp. 86-113, 1990
29.Wang, J. S. and H. G. Ni, Y.S. He, Finite-difference TVD scheme for computation of dam-break problems, Journal of Hydraulic Engineering. ASCE Vol. 126, No.4, pp. 253–262, 2000
30.Youngs, D.L., K.W Morton and M. J. Baineks, Numerical Methods for Fluid Dynamics, Academic, New York, 1982.
31.Yasuda, T., H. Mutsuda and N. Mizutani, Kinematics of overturning solitary waves and their relations to breaker types, Coastal Engineering, Vol. 29, pp. 317-346, 1997
32.黃清哲、李兆芳、張恩誠,“平板單向移動所形成的自由液面及流場”,中華民國第十六屆海洋工程研討會論文集,B288-B309,1994。