| 研究生: |
蘇宏瑋 Su, Hung-Wei |
|---|---|
| 論文名稱: |
無孔徑近場掃描式光學顯微術之訊噪比評估 Apertureless Near-field Scanning Optical Microscopy: SNR considerations |
| 指導教授: |
陳顯禎
Chen, Shean-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 奈米結構 、訊噪比 、無孔徑近場掃描式光學顯微術 |
| 外文關鍵詞: | signal to noise ration, nanostructure, apertureless near-field scanning optical microsc |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近場掃描式光學顯微鏡提供了空間解析度小於繞射極限的光學資訊,而光纖式近場掃描式光學顯微鏡由於光纖易受到其截止效應、熱傷害等現象影響到其解析度,故發展出了無孔徑的近場掃描式光學顯微鏡。
本論文主要研究目的在於以原子力顯微鏡為基礎,建立一套無孔徑近場掃描式光學顯微鏡,藉由自差式干涉與外差式干涉技術的使用擷取光學訊號。而擷取的光學散射信號包含了探針與奈米結構交互作用的近場光學信號以及結構表面散射等作用產生的背景信號,將此信號經過鎖相放大器之解調變以獲得奈米結構的近場光學資訊。藉由資料擷取卡或數位信號處理器嵌入式系統做為控制核心,整合周邊的操控元件,並對此系統目前的穩定度進行校正以及針對量測得到的實驗結果進行訊噪比之評估。
Near-field scanning optical microscopy (NSOM) provides an optical spatial resolution below the diffraction limit. However, the resolution of the conventional aperture NSOM with a metal-coated fiber is confined greater than 50nm due to waveguide cut-off effect and thermal noise. In order to improve the spatial resolution, an apertureless NSOM (aNSOM) has been developed.
In this thesis, an aNSOM based on a commercial AFM is attempted to develop by intergrading a nanopositioning stage and other opto-electronic instruments. The near field optical information is detected by utilizing homodyne and heterodyne modulation detections. The optical signal includes the light scattered by the tip, interacted with sample in near-field, scattered by sample to induce background signal. The far field signal is detected by avalanche photodiode, and then the near-field optical information from the tip interacted with the sample is demodulated by a lock-in amplifier. All the signals and instruments are collected and controlled by using a data acquisition (DAQ) card and an embedded system based on a digital signal processing (DSP) board. Finally, the stability of system is calibrated and the signal-to-noise ratio is evaluated.
[1] E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356-362 (1928).
[2] J. A. O’Keeffe, “Resolving power of visible light,” J. Opt. Soc. Am. 46, 359-361 (1956).
[3] E. A. Ash, and G. Nichols, “Super-resolution aperture scanning microscope,” Nature 237, 510-512 (1972).
[4] G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Physica Acta 55, 726-735 (1982).
[5] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56, 930-933 (1986).
[6] U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318-3327 (1986).
[7] H. K. Wickramasinghe and C. C. Williams, “Apertureless near field optical microscope,” US Patent 4947034 (1990).
[8] A. V. Zayats, and V. Sandoghdar, “Apertureless scanning near-field second-harmonic microscopy,” Optics Communications 178, 245-249 (2000).
[9] D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. Cajko, and I. Tsukerman, “Optical properties and enhancement factors of the tips for apertureless near-field optics,” J. Opt. A: Pure Appl. Opt. 8, 183-190 (2006).
[10] N. Nilius, N. Ernst, and H. J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002).
[11] E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014-4017 (1999).
[12] C. Girardy and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996).
[13] A. Bouhelier, G. P. Wiederrecht, S.-H. Chang, and S. K. Gray, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823-833 (2006).
[14] 林正祥,光電訊號處理系統於生醫檢測之開發與應用,國立中央大學機械工程研究所碩士論文,6月(2005)。
[15] 黃士豪,DVD光碟機之DSP主動式聚焦控制器,國立中央大學機械工程研究所碩士論文,6月(2004)。
[16] 黃貞翰,探針強化近場掃描式光學顯微鏡之研製,國立成功大學工程科學研究所碩士論文,6月(2006)。
[17] K. Fukuzawz, K. Takahashi, and Y. Tan, “Reducing background light interaction in near-field optical microscopy using lateral and vertical probe-dithering,” Optical Review 6, 245-248 (1999).
[18] D. Barchiesi and T. Grosges, “Signal reconstruction from a scanning near-field optical microscopy approach curve,” Optical Express 13, 6519-6526 (2005).
[19] M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089-5091 (2003).
[20] P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. Appl. Phys. 99, 124309 (2006).
[21] P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101, 064303 (2007).
[22] R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical icroscope based on local perturbation of a diffraction spot,” Optics Letters 20, 1924-1926 (1995).
[23] S. S. Aphale, S. Devasia, and S. O. R. Moheimani, “High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties,” Nanotechnology 19, 125503 (2008).