| 研究生: |
馬發鑫 Ma, Fa-Xin |
|---|---|
| 論文名稱: |
板膜複合共振吸音體之產品開發 Product Development of Combination Panel-Membrane Resonant Absorber |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 板膜複合共振 、低頻吸音設計 、室內聲學改善 |
| 外文關鍵詞: | Panel-Membrane Resonant, Low Frequency Absorption, Improve Room Acoustic |
| 相關次數: | 點閱:95 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
室內聲學設計中迴響時間一直是頗受關注的熱點,過去長期一直認為低頻(125-250Hz)、中頻(500-1000Hz)迴響之比決定廳堂的豐滿度,低頻迴響時間需高於中高頻;然而近年研究則提出低頻時間過長遮蔽了對清晰度極為重要的中、高頻,最終影響語言清晰度(C50)或音樂清晰度(C80),提出應加強對室內聲學中的低頻阻尼和迴響時間的控制。
改善空間低頻問題的吸音材料,可大概分為「穿孔板共振」、「薄膜共振」、「薄板共振」、「微孔板共振」、「亥姆霍茲共振」5類。 如果直接在空間中處理低頻問題,二次改造將將佔用大量的空間及其成本;本研究旨在利用「穿孔板共振理論」結合「薄膜共振理論」開發一種新型的「板膜複合共振吸音體」改善空間低頻問題。
目前研究分為兩個階段,分別為「產品開發」與「模擬實場應用驗證」。「產品開發」階段以單一穿孔金屬板和油畫布料進行結合和結構變化,瞭解其吸音性能,實驗結果數據表明:在10cm邊框其低頻250Hz吸音率最高達0.75,在500Hz最高吸音率達0.76;在20cm邊框其低頻125-250Hz吸音率最高值分別達0.8和0.75;呈現出以20cm邊框設計的「板膜複合共振吸音體」能在低頻段吸收達到最好效益。
「模擬實場應用驗證」階段前期將利用格致堂聲學實測,針對空間存在低頻時間過長的聲學問題,後期以聲學模擬軟體(EASE)分析後擬定改善策略後,利用不同的「板膜複合共振吸音體」組合改善策略探討其性能差異。
因此,本研究目的在開發一種性能較佳、成本較低、美觀性的低頻共振吸音器;預期就為小型空間及其歷史空間改良低頻干擾提出新的策略以達到適合語言和音樂用途的迴響時間和語音清晰指標。後期可以加入實場驗證和針對開發階段進行再次深化,如:針對油畫布上漆和改變穿孔板密度探討其性能差異。
Reverberation time has always been a hot topic in the architecture acoustics design. Reverberation time on the low frequency was too long, means that might lead to poor clarity and listening quality of musicians and audiences. In addition, the difference between the low frequency and high frequency reverberation time is too large, and this situation usually causes high frequency sound being masked by low frequency sound.
The purpose of this study is to develop a new type of combination panel-membrane resonant absorber to improve the spatial low frequency problem by the perforation panel resonance theory and membrane resonance theory. It is divided into two stages including product development and real field application simulation verification. In the stage of product development, the single perforated metal plate and canvas are combined and the structure is changed to understand their sound absorption performance. The experimental results show that the highest sound absorption coefficient for 10cm frame is 0.75 at 250Hz and 0.76 at 500Hz; the highest sound absorption coefficient for 20cm frame is 0.8 and 0.75 respectively at 125Hz and 250Hz; the designed combination panel-membrane resonant absorber at 20cm frame can achieve the best absorption effect in the low frequency range.
In the stage of real field application simulation verification, for Ge-Chi Hall has the acoustic problems with too long low frequency, different combination panel-membrane resonant absorbers are used in sound field simulation software (EASE) to draw up improvement strategies and explore the performance differences. According to the results, the results of simulation showed high correlation with field measurement, which can be used for propose the acoustical improvement strategies, the combination panel-membrane resonant absorber had a good effect on absorbing low-frequency reflection sounds. If based on the performance of low-frequency absorbing, it is recommended to S1C3_B4. If based on the performance of decoration and cost, it is recommended to S2C3_B4.
(一) 中文文獻
1. CNS 15218(2016):聲學 - 建築物使用之吸音材 - 吸音量評定。臺北市:經濟部標準檢驗局。
2. CNS 9056(2014):聲學 - 迴響室之吸音量測。臺北市:經濟部標準檢驗局。
3. GB T50356 2005 劇場、電影院和多用途廳堂建築聲學設計規範。
4. JGJ57 2000 劇場建築設計規範。
5. 中國科學研究院建築物理研究所 (1987),建築聲學設計手冊,中國建築工業出版社。
6. 王季卿(2016)。音樂廳音質設計進展及問題探討。聲學技術, 2016, 35(5): 391-397。
7. 吳碩賢編(2000)。建築聲學設計原理。北京市:中國建築工業出版社。
8. 周鼎金編(2012)。建築物理。新北市:裕祥出版社。
9. 查雪琴(2016)。室內低頻混響時間特性探討。聲學技術, 2016, 35(5): 435-441。
10. 查雪琴, FuchsH V.(2008)對混響時間特性的一些看法.第十屆全國建築物理學術會議論文集.廣州:華南理工大學出版社,2008:37-41。
11. 馬大猷(2004)。現代聲學理論基礎。北京市:科學出版社
12. 楊偉,沈勇,劉紫贇(2012)。漢語普通話平均頻譜,南京大學學報(自然科學),2012, 48(1)。
13. 盧博堅,劉嘉俊(2011)。噪音控制與防制。台中市:滄海書局。
14. 鍾祥璋(2012)。建築吸音材料與隔聲材料。北京市:化學工業出版社。
15. 羅欽平(2019)。建築聲學設計。北京市:中國科學技術出版社
16. 楊貴恆等編(2018)。噪聲於振動控制技術及其應用。北京市:化學工業出版社。
(二) 外文文獻
1. Beranek L. L. (2006). Analysis of Sabine and Eyring equations and their application to concert hall audience and chair absorption. The Journal of the Acoustical Society of America, 120, 1399-1410.
2. Beranek, L. L. (1962). Music, Acoustics and Architecture. Wiley.
3. Beranek, L. L. (1996). Concert and Opera Halls: How They Sound. Acoustical Society of America.
4. Cudina, M. Prezelj, J. Puslar-Cudina M. (2016) The impact of paintings hung on lecture room walls on the speech intelligibility and perception of background noise. Indoor and Built Environment 2016, 659-673.
5. DIN 18041 (2016) Acoustic quality in rooms Specifications and instructions for the room acoustic design
6. EASE tutorial. (2009). ADA (Acoustic Design Ahnert), Germany.
7. Ehmer, R.(1959) . Masking Patterns of Tones, J. Acoust. Soc. Am. 31
8. Eyring, C.F. (1930). Reverberation Time in “Dead” Rooms. The Journal of the Acoustical Society of America, Vol. 1, 217-241.
9. Fasold W, Veres E. (2003). Schallschutz + Raumakustik in der Praxis. Verlag Bauwesen, Berlin
10. Francesco M., Michele D. & Sabrina D. C. (2011). Laboratory measurement of sound absorption of occupied pews and standing audiences. Applied Acoustic, 72(6), 341-349.
11. Fuchs, Helmut V. (2013).Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise ControlBerlin
12. Glen M. B. (2008). Handbook of sound engineers. UK: Transferred to Taylor & Francis.
13. Helmut V Fuchs (2015). Gerhard Steinke Requirements for low frequency reverberation in spaces for music: part 2: auditoria for performances and recordings Psychomusicology: Music, Mind,and Brain 2015 ,282- 293
14. Helmut V Fuchs , ZHA Xueqin (2015). Requirement for low frequency reverberation in spaces for music: Part 1: Smaller rooms for different uses in spaces for music. Psychomusicology: Music, Mind,and Brain 2015, 272- 281.
15. Houtgast, T., Steeneken, H. J. M. (1971). Evaluation of Speech Transmission Channels by Using Artificial Signals. Acta Acustica united with Acustica, Volume 25, No. 6.
16. ISO 11654(1997). Acoustics - Sound absorbers for use in building - Rating of sound absorption. Geneva, Switzerland: International Organization for Standardization.
17. ISO 3382(2012). Measurement of the reverberat ion time of rooms with reference to other acoustical parameters.
18. ISO 354(2003). Acoustics - Measurement of sound absorption in a reverberation room. Geneva, Switzerland: International Organization for Standardization.
19. James Heddle (2016), Room Acoustics for Listening, Brisbane, Australia. Proceedings of ACOUSTICS 2016, 9-11 November 2016.
20. James Heddle. (2016) . Room Acoustics for Listening, Proceedings of ACOUSTICS
21. Knudsen, V. O.(1932)Architectural Acoustics,John Wiley&Sons Inc.,New York,pp.371-381.
22. Støfringsdal, B. (2013). Desired room acoustical response for amplified music. International Symposium on Room Acoustics. Toronto, Canada.
23. Zainulabidin, Muhd & Wan, Lauren & Ismail, Al Emran & Kasron, M.Z. & Kassim, Angzzas. (2016). Effect of membrane surface tension and backed-air gap distance on sound absorption characteristics. 11. 5494-5498.
24. Zha X, Fuchs H V , Drotleff H(2003). Eine neue akustik für vier sparten-das große haus des staatstheaters mainz. Bauphysik 2003, 25 (3): 111-121