| 研究生: |
林俊成 Lin, Chun-Cheng |
|---|---|
| 論文名稱: |
氧化銦鎵鋅薄膜電晶體之研製與電性分析 Fabrication and characterization of IGZO thin film transistors |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 共同指導教授: |
馬誠佑
Ma, Cheng-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 銦鎵鋅氧化物 (IGZO) 、薄膜電晶體 、高介電值絕緣層 、保護層。 |
| 外文關鍵詞: | IGZO (In-Ga-Zn-O), Thin-film transistors (TFTs), plasma passivation, high-k dielectric. |
| 相關次數: | 點閱:120 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以top-gate為模型,比較雙層絕緣層(SiO2/HfO2)與單層絕緣層(PECVD-SiO2)結構之IGZO薄膜電晶體特性。透過實驗發現,雙層絕緣層結構之IGZO薄膜電晶體能保護元件,有效避免電漿製程對IGZO薄膜特性的影響。因IGZO薄膜表層極易受環境影響,像是氧氣、水氣、光與溫度都會改變IGZO薄膜的表現,且在沉積PECVD-SiO2時,含有氫元素之電漿也會對IGZO薄膜進行佈植,使得薄膜中之電子濃度提升,讓單層絕緣層結構之IGZO薄膜呈現高導電的電性,元件也因此無法關閉。反觀本研究提出的雙層絕緣層IGZO薄膜電晶體,因為有電子束蒸鍍的HfO2做保護層降低電將對薄膜的影響,所以元件才具備正常的開關特性曲線。
為了近一步提升雙層絕緣層IGZO薄膜電晶體之特性,我們在沉積閘極氧化層之前,將元件放置在PECVD產生的氧電漿環境下,進而修補IGZO薄膜的表層缺陷,提升IGZO薄膜的品質,讓電子在通道層中傳輸時得以更加順利。從不同溫度下的電性表現可以看出,經過氧電漿處理的元件相較於未經處理的,因通道缺陷濃度較低,而具有相對較穩定的臨限電壓(VTH),這是因為在溫度上升後,能響應的缺陷能態減少,使得元件呈現相對較穩定的特性。因此,氧電漿處理法有應用於改善IGZO通道層薄膜之潛力。
We proposed a bi-layer dielectric SiO2/HfO2 structure and compared its performance to that of single-layer dielectric SiO2 structure for the fabrication of amorphous In-Ga-Zn-O thin-film transistors (IGZO-TFTs). Bi-layer dielectric structure has been demonstrated to be a good protection layer during plasma process for the deposition of PECVD-SiO¬2. The IGZO film has a weak top surface which is sensitive to the environment conditions, such like gas, moisture, light and temperature. In addition, hydrogen specie itself was found to act as a carrier of donors in the IGZO thin-film during depositing the SiO2 dielectric by plasma-enhanced chemical vapor deposition (PECVD) system. In this paper, top-gate structure of amorphous IGZO-TFT with single-layer PECVD-SiO2 gate dielectric shows high conductivity, indicating that top surface of IGZO thin-film has poor quality. In contrast, when bi-layer PECVD-SiO2/HfO2 gate dielectric is applied to fabricate IGZO-TFT, a normal transfer characteristics is achieved. This behavior can be attributed to the protection effect of HfO2 dielectric deposited by electron-beam evaporation system.
Furthermore, O2 plasma surface treatment on IGZO active layer prior to depositing the gate dielectric is also executed. The O2 plasma treatment effectively improve the device performance of top-gate IGZO-TFT with bi-layer gate dielectric. The results suggest that the density of trap states for IGZO-TFT with O2 plasma treatment is much lower than that in as-fabricated devices. Consequently, the temperature effect of instable transfer characteristics of IGZO-TFT has significantly suppressed due to repairing the trap defects by O2 plasma surface treatment.
References in Chapter 1
[1] P. M. Smith, P. G. Carey and T. W. Sigmon: Appl. Phys. Lett. 70 (1997) 342.
[2] F. Lemmi, W. Chung, S. Lin, P. M. Smith, T. Sasagawa, B. C. Drews, A. Hua, J. R. Stern and J. Y. Chen: IEEE Electron Device Lett. 25 (2004) 486.
[3] Toshio Kamiya and Hideo Hosono, "Material characteristics and applications of transparent"
[4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature, 432 (2004) 488.
[5] R. F. Pierret, Semiconductor Device Fundamentals, Addision-Wesley Publishing Company, Inc., (1996).
[6] The 166th Committee on Photonic and Electronic Oxide of Japan Society for the Promotion of Science, Technology of Transparent Conductive Oxide Thin-Films, pp.49-51, Ohm-sha, (2006).
[7] Toshio Kamiya and Masashi Kawasaki, MRS BULLETIN, 33 (2008) 1061.
[8] Toshio Kamiya and Hideo Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors", NPG Asia Mater 215 (2010).
[9] Toshio Kamiya, Kenji Nomura, and Hideo Hosono, "Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model", J. Display Technol. 5 (12), 462 (2009).
[10] W. B. Jackson, R. L. Hoffman, G. S. Herman, Appl. Phys. Lett., 87 (2005) 193503.
[11] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. W ager, R. L. Hoffman, C. –H. Park, D. A. Keszler, J. Appl. Phys. 97 (2005) 064505.
[12] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Microelectronic Engineering, 72 (2004) 294.
[13] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 89 (2006) 112123.
[14] K. Nomura et al., Jpn J. Appl. Phys. 45, 4303 (2006).
[15] T. Kamiya, K. Nomura, H. Hosono, J. Display Technol. 5, 273 (2009).
[16] H. Hosono. Journal of Non-Crystalline Solids 352 (2006) 851–858.
[17] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr, X.-H. Zhang, B. Kippelen, Appl. Phys. Lett. 94, 142107 (2009).
[18] J. B. Kim, C. Fuentes-Hernandez, B. Kippelen, Appl. Phys. Lett. 93, 242111 (2008).
[19] M. Bae et al., "Analytical Current and Capacitance Models for Amorphous Indium-Gallium-ZincOxide Thin-Film Transistors," IEEE Trans. Elec. Dev., vol. 60, no. 10, 2013.
[20] R. Hayashi et al., J. Soc. Inf. Display 15, 915 (2007).
[21] H. R. Farrah, R. F. Steinberg, “Analysis of Double-Gate Thin-Film Transistor,” IEEE Trans. Electron Devices, vol. 14, no. 2, Feb 1967.
[22] J. Huang, W. Deng, X. Zheng, X. Jiang, “A Compact Model for Undoped Symmetric Double-Gate Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 57, no. 10, Oct 2010.
[23] T. Aoi, N. Oka, Y. Sato, R. Hayashi, H. Kumomi, and Y. Shigesato, “DC sputter deposition of amorphous indium–gallium–zinc–oxide (a-IGZO) films with H2O introduction,” Thin Solid Films, vol. 518, pp. 3004–3007, 2010.
[24] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, “Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices,” Jpn. J. Appl. Phys., vol. 48, pp. 031301-1-4, 2009.
[25] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Combinatorial approach to thin-film transistors using multi-component semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system,” Appl. Phys. Lett., vol. 90, pp. 242114-1-3, 2007.
[26] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, “Toward high-performance amorphous GIZO TFTs,” Journal of the Electrochemical Society, vol. 156, pp. H161-H168, 2009.
[27] “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”
[29] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Thin Solid Films 516 (2008) 1516.
[30] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, J. Non-Cryst. Solids 354 (2008) 2796.
[31] P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Riedl, Adv. Mater. 18 (2006) 738.
[32] W. Lim, D.P. Norton, J.H. Jang, V. Craciun, S.J. Pearton, and F. Ren, Appl. Phys. Lett. 92 (2008) 122102.
[33] H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, and J. F. Wager, J. Non-Cryst. Solids 354 (2008) 2826.
[34] D. Hong, “Process Development and Modeling of Thin-Film Transistors”, Master's Thesis, Oregon State University, 2005.
[35] J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, Y. Park, High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation, Appl. Phys. Lett. 93 (2008) 053505.
[36] J.-S. Kim, M.-K. Joo, M. X. Piao, S.-E. Ahn, Y.-H. Choi, H.-K. Jamg, G.-T. Kim, Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors, J. Appl. Phys. 115 (2014) 114503.
[37] T.-Y. Hsieh, T.-C. Chang, T.-C. Chen, M.-Y. Tsai, W.-H. Lu, S.-C. Chen, F.-Y. Jian, C.-S. Lin, Effect of N2O plasma treatment on the improvement of instability under light illumination for InGaZnO thin-film transistors, Thin Solid Films 520 (2011) 1427.
[38] S.Kishida, Y. Naruke, Y. Uchida, and M. Matsummura. Theoretical analysis of amorphous-silicon field-effect transistors. Jpn. Appl. Phys. 22:511-517, 1983.
[39] J.M. Lee B.H. Choi semicond. Sci. Technol.24,2009
[40] S.M. Sze. Physics of Semiconductor Devices (Wiley, New York, 1981)
[41] P. Barquinha, A. M. Vila, G. Gonc¸alves, L. Pereira, R. Martins, J. Morante, and E. Fortunato, Phys. Status Solidi A 205, 1905 (2008).
[42] T-C. Fung et al., "Two-dimensional numerical simulation of radio frequency sputter amorphous In-GaZn-O thin-film transistors," J. Appl. Phys., 106, 084511, 2009.
[43] C.M Hung, ‘‘Contact Resistance and Stability Analysis of Oxide-Based Thin Film Transistors’’
[44] C.-Y. Chen and J. Kanicki. ‘‘Origin of series resistance in a-Si:H TFTs” Solid-State Electr. 42:705-713, 1988.
[45] J. Kanicki. ‘‘contact resistance to undoped and phosphorus-doped hydrogenated amorphous silicon films’’ Appl. Phys. Lett. 53:1943-1945, 1988.
References in Chapter 2
[1] http://lnf-wiki.eecs.umich.edu/wiki/Sputter_deposition
[2] http://www.jeol.co.jp/en/science/eb.html
[3] https://en.wikipedia.org/wiki/Atomic-force_microscopy
[4] https://nanolab.berkeley.edu
References in Chapter 3
[1] J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, Y. Park, High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation, Appl. Phys. Lett. 93 (2008) 053505.
[2] T.-Y. Hsieh, T.-C. Chang, T.-C. Chen, M.-Y. Tsai, W.-H. Lu, S.-C. Chen, F.-Y. Jian, C.-S. Lin, Effect of N2O plasma treatment on the improvement of instability under light illumination for InGaZnO thin-film transistors, Thin Solid Films 520 (2011) 1427.
[3] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
[4] G.-W. Chang, T.-C. Chang, J.-C. Jhu, T.-M. Tsai, Y.-E. Syu, K.-C. Chang, Y.-H. Tai, F.-Y. Jian, Y.-C. Hung, Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping phenomenon under gate bias stress, Appl. Phys. Lett. 100 (2012) 182103.
[5] P.-T. Liu, Y.-T. Chou, L.-F. Teng, F.-H. Li, H.-P. Shieh, Nitrogenated amorphous InGaZnO thin film transistor, Appl. Phys. Lett. 98 (2011) 052102.
[6] P. Liu, T. P. Chen, Z. Liu, C. S. Tan, K. C. Leong, Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films, Thin Solid Films 545 (2013) 533.
[7] P. K. Nayak, M. N. Hedhili, D. Cha, H. N. Alshareef, High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment, Appl. Phys. Lett. 100 (2012) 202106.
[8] H. Pu, Q. Zhou, L. Yue, Q. Zhang, Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors, Appl. Surf. Sci. 283 (2013) 722.
[9] X. Liu, L. L. Wang, H. Hu, X. Lu, K. Wang, G. Wang, S. Zhan, Performance and stability improvements of back-channel-etched amorphous Indium–Gallium–Zinc thin-film-transistors by CF4+O2 plasma treatment, IEEE Electron Device Lett. 36 (2015) 911.
[10] J.-C. Jhu, T.-C. Chang, G.-W. Chang, Y.-H. Tai, W.-W. Tsai, W.-J. Chiang, J.-Y. Yan, Reduction of defect formation in amorphous indium-gallium-zinc-oxide thin film transistors by N2O plasma treatment, J. Appl. Phys. 114 (2013) 204501.