| 研究生: |
董建圻 Tung, Chieng-Chi |
|---|---|
| 論文名稱: |
自組裝分子層修飾金/砷化鎵蕭特基二極體之製備及其酒精感測特性之研究 Preparation and Ethanol Sensing Characteristics of Self-Assembled Monolayers Modified Au/GaAs Schottky Diodes |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 自組裝單分子層 、烷基硫醇 、蕭特基二極體 、酒精感測器 |
| 外文關鍵詞: | self-assembled monolayers, Schottky diode, alkanethiolate, ethanol sensor |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,吾人係以烷基硫醇修飾金/砷化鎵蕭特基二極體製備新穎性酒精感測器。文中分別以不同碳鏈長度之烷基硫醇在金膜上形成自組裝單分子層,利用接觸角、反射式紅外線吸收光譜儀和循環伏安法探討自組裝單分子層之特性,其次,製作烷基硫醇修飾金/砷化鎵蕭特基二極體,探討其電流-電壓特性。另外,以各條件所得二極體元件進行酒精感測,實驗中改變酒精濃度、操作溫度及施加偏壓,探討金膜厚度、烴基碳數及末端官能基(–COOH、–OH、–CH3)對酒精感測性能之影響。
研究結果顯示,當金膜厚度在20-200 nm間時,金膜厚度愈薄時,其表面型態愈粗糙,故所得硫醇在金膜表面吸附量較少。另外,羧基 (–COOH) 修飾金膜表面隨碳數增加其親水性愈佳,且單分子層愈趨於整齊排列,故可提供酒精吸附之活性座數目增加。
由二極體元件之電性量測結果顯示,當金膜厚度下降時,電流值提升。由酒精感測結果顯示,單分子層之化學結構對電性及感測性能影響甚鉅。當烴基碳數由3增加至6時,由於自組裝性增高,吸附座增加,故感測靈敏度提升,但當碳數大於6時,由於碳鏈愈長,誘導之靜電位能降低,故靈敏度下降。若以苯環取代直鏈烷基,可提升感測靈敏度。末端官能基對酒精感測性能扮演極重要之角色,其感測靈敏度依序為 –COOH > –OH > –CH3。當酒精濃度在1.95-4.55% 範圍內,濃度增高時,靈敏度增大,操作溫度在298-308K範圍內時,增高溫度卻造成靈敏度下降。
综合以上結果,烷基硫醇修飾金/砷化鎵蕭特基二極體製備新穎性酒精感測器,在金膜厚度為50 nm,烴基碳數為6且末端官能基為羧基時,能得一最佳靈敏度之常溫酒精感測器。
In this work, a series of novel sensors based on the self-assembled organo-functionalized Au/GaAs Schottky diodes were fabricated for ethanol detection. Firstly, the contact angle, reflection absorption infrared spectroscope, and cyclic voltammetry techniques were used for the characterization of self-assembled monolayers (SAMs). The current-vcoltage (I-V) rectifying properties of SAMs functionalized devices were investigated. Moreover, the ethanol sensing performances of these devices were studied under various ethanol concentrations, temperatures and applied voltages. The dependences of ethanol sensing performances on the Au thickness, carbon numbers and terminal functional groups (e.g., –COOH、 –OH and –CH3) of SAMs were investigated.
From experimental results, it revealed that, in the Au thickness ranging of 20-200 nm, the surface roughness of Au layer increased with decreasing the Au thickness, resulting in less adsorption amounts of SAMs on Au surface. For the carboxyl-terminated SAMs/Au, the hydrophilicity, order and stability were increased with increasing carbon numbers. Besides, the SAMs tended to produce more active sites.
From the result of I-V rectifying properties, the current of SAMs modified Au/GaAs device increased with decreasing the Au thickness. From the results of ethanol detection, it indicated that as the carbon number increased from 3 to 6, the sensitivity of the studied devices were increased. Whereas, when the carbon number was above 6, the current was reduced owing to the decrease of induced electrostatic potential. In addition, as the aliphatics replaced by aromatics the device showed an enhancement in the ethanol sensitivity. It also found that the terminated functional group of SAMs played an important role on the sensing performance of device. The ethanol sensitivity decreased in the order as –COOH > –OH > –CH3. Under the ethanol concentrations of 1.95-4.55% EtOH/N2 and temperature of 298-308K, the sensitivity of device was increased with either increasing the ethanol concentration or decreasing the sensing temperature.
In conclusion, among various preparation conditions, the Au/GaAs Schottky diodes modified by the carboxyl-terminated alkylthiol SAMs with a carbon number of 6 and with a Au thickness of 50 nm showed the best ethanol sensing performance.
[1] B. P. J. de Lacy Costello, R. Ewen, H. Gunson, N. Ratcliffe, P. Spencer, “The development of a sensor system for the early detection of soft rot in store potato tubers,” Meas. Sci. Technol., 11, 1685 (2000).
[2] A. Caputi, D. P. Mooney, “Gas-chromatographic determination of alcohol in wine-a collaborative study,” J. Assoc. Off. Anal. Chem., 66, 1152 (1983).
[3] S. Pellegrino, F. S. Bruno, M. Petrarulo, “Liquid-chromatographic determination of ethyl-alcohol in body-fluids,” J. Chromatogr. B, 729, 103 (1999).
[4] S. M. Rao, “Spectrographic technique for determining refractive indexes,” Opt. Eng., 36, 162 (1997).
[5] I. Rosendal, F. Schmidt, “For the conversion of specific-gravity of distillate to alcohol content in beer analysis the OIML table is recommended - polynomials are given for alcohol and extract,” J. I. Brewing, 93, 373 (1987).
[6] A. O. S. S. Rangel, I. V. Toth, “Determination of alcohol in wines by flow-injection spectrophotometry using gas-diffusion and an immobilized enzyme reactor,” Am. J. Enol. Viticult., 50, 259 (1999).
[7] J. W. Gardner, Microsensors :principles and applications, Wiley: New York, 1994.
[8] Z. Ying, Q. Wan, Z. T. Song, S. L. Feng, “SnO2 nanowhiskers and their ethanol sensing characteristics,” Nanotechnology, 15, 1682 (2004).
[9] P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, X. Correig, “Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces,” Sens. Acurator B, 99, 201 (2004).
[10] F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, “CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4,” Sens. Acurator B, 108, 172 (2005).
[11] M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko, I. Ivanova, A. Ponzoni, G. Faglia, E. Comini, “Nanocomposites SnO2/Fe2O3: Sensor and catalytic properties,” Sens. Acurator B, 118, 208 (2006).
[12] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors,” Sens. Acurator B, 126, 473 (2007).
[13] O. K. Tan, W. Cao, Y. Hu, W. Zhu, “Nanostructured oxides by high-energy ball milling technique: application as gas sensing materials,” Solid State Ionics, 172, 309 (2004).
[14] H. B. Faramarz, K. Mehrdad, K. Mohammad, T. Tom, “A resistive gas sensor based on undoped p-type anatase,” Sens. Acurator B, 110, 28 (2005).
[15] J. Wen, X. Ge, X. Liu, “Preparation of spinel-type Cd1−xMgxGa2O4 gas-sensing material by sol–gel method,” Sens. Acurator B, 115, 622 (2006).
[16] S. J. Ippolito, A. Ponzoni, K. K. Zadeh, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri, “Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity,” Sens. Acurator B, 117, 442 (2006).
[17] M. J. L. Castanon, A. J. M. Ordieres, P. T. Blanco, “Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes,” Biosens. Bioelectron., 12, 511 (1997).
[18] J. K. Park, H. J. Yee, K. S. Lee, W. Y. Lee, M. C. Shin, T. H. Kim, S. R. Kim, “Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase,” Anal. Chim. Acta, 390, 83 (1999).
[19] K. Mitsubayashi, H. Matsunaga, G. Nishio, S. Toda, Y. Nakanishi, “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking,” Biosens. Bioelectron., 20, 1573 (2005).
[20] P. Jacquinot, A. W. E. Hodgson, B. Muller, B. Wehrli, P. C. Hauser, “Amperometric detection of gaseous ethanol and acetaldehyde at low concentrations on an Au-Nafion electrode,” Analyst, 124, 871 (1999).
[21] T. R. L. C. Paixao, M. Bertotti, “Development of a breath alcohol sensor using a copper electrode in an alkaline medium,” J. Electroanal. Chem., 571, 101 (2004).
[22] M. Penza, F. Antolini, M V. Antisari, “Carbon nanotubes-based surface acoustic waves oscillating sensor for vapour detection,” Thin Solid Films, 472, 246 (2005).
[23] H. L. Hsu, J. M. Jehng, Y. Sung, L. C. Wang, S. R. Yang, “The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor,” Mater. Ter. Chem. Phys., 109, 148 (2008).
[24] T. Sasahara, M. Nishimura, H. Ishihara, K. Toyoda, T. Sunayama, S. Uematsu, T. Ozawa, K. Ogino, M. Egashira, “Detection of volatile organic compounds by a catalytic combustion sensor under pulse heating operation,” Electrochemistry, 71, 457 (2003).
[25] I. Langmuir, “The constitution and fundamental properties of solids and liquids. II liquids,” J. Am. Chem. Soc., 39, 1848 (1917).
[26] K. B. Blodgett, “Films built by depositing successive monomolecular layers on a solid surface,” J. Am. Chem. Soc., 57, 1007 (1935).
[27] W. C. Bigelow, D. L. Pickett, W. A. Zisman, J. Colloid Interface Sci., 1, 513 (1946).
[28] R. G. Nuzzo, D. L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces,” J. Am. Chem. Soc., 105, 4481 (1983).
[29] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev., 105, 1103 (2005).
[30] R. G. Nuzzo, F. A. Fusco, D. L. Allara, “Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces,” J. Am. Chem. Soc., 109, 2358 (1987).
[31] C. D. Bain, G. M. Whitesides, “Molecular-level control over surface order in self-assembled monolayer films of thiols on gold ,” Science, 240, 62 (1988).
[32] C. D. Bain, J. Evall, G. M. Whitesides, “Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent,” J. Am. Chem. Soc., 111, 7155 (1989).
[33] H. A. Biebuyck, C. D. Bain, G. M. Whitesides, “Comparison of organic monolayers on polycrystalline gold spontaneously assembled from solutions containing dialkyl disulfides or alkanethiols,” Langmuir, 10, 1825 (1994).
[34] Y. S. Shon, C. Mazzitelli, R. W. Murray, “Unsymmetrical disulfides and thiol mixtures produce different mixed monolayer-protected gold clusters,” Langmuir, 17, 7735 (2001).
[35] S. Frey, A. Shaporenko, M. Zharnikov, P. Harder, D. L. Allara, “Self-assembled monolayers of nitrile-functionalized alkanethiols on gold and silver substrates,” J. Phys. Chem. B, 107, 7716 (2003).
[36] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, R. G. Nuzzo, “Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold,” J. Am. Chem. Soc., 113, 7152 (1991).
[37] M. M. Walczak, C. Chung, S. M. Stole, C. A. Widrig, M. D. Porter, “Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces,” J. Am. Chem. Soc., 113, 2370 (1991).
[38] J. C. Love, D. B. Wolfe, R. Haasch, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, R. G. Nuzzo, “Formation and structure of self-assembled monolayers of alkanethiolates on palladium,” J. Am. Chem. Soc., 125, 2597 (2003).
[39] Z. Li, S. C. Chang, R. S. Williams, “Self-assembly of alkanethiol molecules onto platinum and platinum oxide surfaces,” Langmuir, 19, 6744 (2003).
[40] N. Muskal, I. Turyan, D. Mandler, “Self-assembled monolayers on mercury surfaces,” J. Electroanal. Chem., 409, 131 (1996).
[41] X. Ding, K. Moumanis, J. J. Dubowski, “Fourier-transform infrared and photoluminescence spectoscopies of self-assembled monolayers of long-chain thiols on (001) GaAs,” J. Appl. Phys., 99, 054701(2006).
[42] H. H. Park, A. Ivanisevic, “Formation and characterization of homogeneous and mixed self-Assembled monolayers of peptides and alkanethiols on indium phosphide surfaces,” J. Phys. Chem. C, 111, 3710 (2007).
[43] M. A. Marcus, W. Flood, M. Stiegerwald, L. Brus, M. Bawendi, “Structure of capped cadmium selenide clusters by EXAFS,” J. Phys. Chem., 95, 1572 (1991).
[44] J. Gun, J. Sagiv, “On the formation and structure of self-assembling monolayers : III. Time of formation, solvent retention, and release,” J. Coll. Interf. Sci., 112, 457 (1986).
[45] A. Ulman,”Formation and structure of self-assembled monolayers,” Chem. Rev., 96, 1533 (1996).
[46] P. E. Laibinis, G. M. Whitesides, “ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities,” J. Am. Chem. Soc., 114, 1990 (1992).
[47] C. N. Sayre, D. M. Collard, “Self-assembled monolayers of pyrrole-containing alkanethiols on gold,” Langmuir, 11, 302 (1995).
[48] J. B. D. Green, M. T. McDermott, M. D. Porter, L. M. Siperko, “Nanometer-scale mapping of chemically distinct domains at well-defined organic interfaces using frictional force microscopy,” J. Phys. Chem., 99, 10960 (1995).
[49] J. Genzer, K. Efimenko, “Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers,” Science, 290, 2130 (2000).
[50] K. L. Prime, G. M. Whitesides, “Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers,” J. Am. Chem. Soc., 115, 10714 (1993).
[51] C. E. D. Chidsey, “Free energy and temperature dependence of electron transfer at the metal-electrolyte interface,” Science, 251, 919 (1991).
[52] V. B. Maksvytis, B. Raguse, “Highly impermeable "soft" self-assembled monolayers,” J. Am. Chem. Soc., 122, 9544 (2000).
[53] S. T. Patton, K. C. Eapen, J. S. Zabinski, J. H. Sanders, A. A. Voevodin, “Lubrication of microelectromechanical systems radio frequency switch contacts using self-assembled monolayers,” J. Appl. Phys., 102, 024903 (2007).
[54] J. J. Hickman, D. Ofer, P. E. Laibinis, G. M. Whitesides, M. S. Wrighton, “Molecular self-assembly of two-terminal, voltammetric microsensors with internal references,” Science, 252, 688 (1991).
[55] Q. Cheng and A. Brajter-Toth, “Permselectivity, sensitivity, and amperometric pH sensing at thioctic acid monolayer microelectrodes,” Anal. Chem., 68, 4180 (1996).
[56] V. Molinero, E. J. Calvo, “Electrostatic interactions at self assembled molecular films of charged thiols on gold,” J. Electroanal. Chem., 445, 17 (1998).
[57] M. W. J. Beulen, F. C. J. M. van Veggel and D., N. Reinhoudt, “Coupling of acid–base and redox functions in mixed sulfide monolayers on gold,” Chem. Commun., 503 (1999).
[58] A. Bardea, E. Katz, I. Willner, “Biosensors with amperometric detection of enzymatically controlled pH-changes,” Electroanalysis, 12, 731 (2000).
[59] I. Rubinstein, S. Steinberg, Y. Tor, A. Shanzer, J. Sagiv, “Ionic recognition and selective response in self-assembling monolayer membranes on electrodes,” Nature, 332, 426 (1988).
[60] T. Moav, A. Hatzor, H. Cohen, J. Libman, I. Rubinstein, A. Shanzer, ” Coordination-Based Symmetric and Asymmetric Bilayers on Gold Surfaces,” Chem. Eur. J., 4, 502 (1998).
[61] N. Wanichacheva, E. R. Soto, C. R. Lambert, W. G. McGimpsey, “Surface-based lithium ion sensor : an electrode derivatized with a self-assembled monolayer,” Anal. Chem., 78, 7132 (2006).
[62] J. Moon, T. Kang, S. Oh, S. Hong, J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid. Interf. Sci., 298, 543 (2006).
[63] H. T. Wang, B. S. Kang, T. F. Chancellor, J. T. P. Lele, Y. Tseng, F. Ren, “Fast electrical detection of Hg(II) ions with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Letts,, 91, 042114 (2007).
[64] S. M. Lai, C. Y. Wu, K. S. Hsu, C. C. Wang, H. C. Chiang, K. L. Lu, Y. I. Chou, “Microcantilever Pb2+ sensor using re-supramolecular functionalization with crown-ether-like recognition sites,” Electrochem. Solid State Lett., 10, J161 (2007).
[65] C. Berggren, G. Johansson, “Capacitance measurements of antibody-antigen interactions in a flow system,” Anal. Chem., 69, 3651 (1997).
[66] J. Rickert, W. Göpel, W. Beck, G. Jung, P. Heiduschka, “A ‘mixed’ self-assembled monolayer for an impedimetric immunosensor,” Biosens. Bioelectron., 11, 757 (1996).
[67] V. M. Mirsky, M. Riepl, O. S. Wolfbeis, “Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes,” Biosens. Bioelectron., 12, 977 (1997).
[68] L. C. S. Chou, C. C. Liu, “Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection,” Sens. Acurator B, 110, 204 (2005).
[69] I. Kubo, Y. Nakane, N. Maehara, “A carboxyalkanethiol monolayer modified electrode for blocking of ascorbic acid oxidation and its application to a biosensor,” Electrochim. Acta, 51, 5163 (2006).
[70] E. Katz, A. F. Buckmann, I. Willner, “Self-powered enzyme-based biosensors,” J. Am. Chem. Soc., 123, 10752 (2001).
[71] R. Levicky, T. M. Herne, M. J. Tarlov, S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: A neutron reflectivity study,” J. Am. Chem. Soc., 120, 9787 (1998).
[72] S. O. Kelley, E. M. Boon, J. K. Barton, N. M. Jackson, M. G. Hill, “Single-base mismatch detection based on charge transduction through DNA,” Nucleic Acids Res., 27, 4830 (1999).
[73] E. M. Boon, D. M. Ceres, T. G. Drummond, M. G. Hill, J. K. Barton, “Mutation detection by electrocatalysis at DNA-modified electrodes,” Nat. Biotechnol., 18, 1096 (2000).
[74] H. Tokuhisa, R. M. Crooks, “Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 12. Two new methods for surface-immobilization and functionalization of chemically sensitive dendrimer surfaces,” Langmuir, 13, 5608 (1997).
[75] R. M. Crooks, A. J. Ricco, “New organic materials suitable for use in chemical sensor arrays,” Acc. Chem. Res., 31, 219 (1998).
[76] A. J. Ricco, R. M. Crooks, G. C. Osbourn, “Surface acoustic wave chemical sensor arrays: new chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures,” Acc. Chem. Res., 31, 289 (1998).
[77] X. C. Zhou, L. Zhong, S. F. Y. Li, S. C. Ng, H. S. O. Chan, “Organic vapour sensors based quartz crystal microbalance coated with self-assembled monolayers,” Sens. Acurator B, 42, 59 (1997).
[78] A. U. Akrajas, M. S. Muhamad, Y. Muhammad, “Self-assembled monolayer of copper(II) meso-tetra(4-sulfanatophenyl) porphyrin as an optical gas sensor,” Sens. Acurator B, 101, 231 (2004).
[79] A. Ulman, An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly, Academic press: London, 1991.
[80] C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc., 111, 321 (1989).
[81] C. E. Poirier, E. D. Pylant, “The self-assembly mechanism of alkanethiols on Au(111),” Science, 272, 1145 (1996).
[82] D. K. Schwartz, “Mechanisms and kinetics of self-assembled monolayer formation,” Annu. Rev. Phys. Chem., 52, 107 (2001).
[83] H. M. Schessler, D. S. Karpovich, G. J. Blanchard, “Quantitating the balance between enthalpic and entropic forces in alkanethiol/gold monolayer self assembly,” J. Am. Chem. Soc., 111, 321 (1989).
[84] D. Losic, J. J. Gooding, J. G. Shapter, “Influence of surface topography on alkanethiol SAMs assembled from solution and by microcontact printing,” Langmuir, 17, 3307 (2001).
[85] G. L. Timp, Nanotechnology, Springer, Verlag New York, 1999.
[86] L. H. Dubois, R. G. Nuzzo, “Synthesis, structure, and properties of model organic surfaces,” Ann. Rew. Phy. Chem., 43, 437 (1992).
[87] J. B. Schlenoff, M. Li, H. Ly, “Stability and self-exchange in alkanethiol monolayers,” J. Am. Chem. Soc., 117, 12528 (1995).
[88] J. G. Lee, J. Lee, J. T. Yates, Jr., “Nondissociative chemisorption of methanethiol on Ag(110): a critical result for self-assembled monolayers,” J. Am. Chem. Soc., 126, 440 (2004).
[89] G. Poirier, “Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy,” Chem. Rew., 97, 1117 (1997).
[90] A. W. Adamson, Physical chemistry of surfaces, Wiley, Chichester, UK (1993).
[91] R. G. Nuzzo, L. H. Dubois, D. L. Allara, “Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers,” J. Am. Chem. Soc., 112, 558 (1990).
[92] M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, “Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry,” J. Am. Chem. Soc., 109, 3559 (1987).
[93] C. A. Widrig, C. Chung, M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes,” J. Electroanal. Chem., 310, 335 (1991).
[94] T. Kakiuchi, H. Usui, D. Hobara, M. Yamamoto, “Voltammetric properties of the reductive desorption of alkanethiol self-assembled monolayers from a metal surface,” Langmuir, 18, 5231 (2002).
[95] C. J. Zhong, M. D. Porter, “Fine structure in the voltammetric desorption curves of alkanethiolate monolayer chemisorbed at gold,” J. Electroanal. Chem., 425, 148 (1997).
[96] S. I. Imabayashi, M. Iida, D. Hobara, Q. F. Zhi, K. Niki, T. Kakiuchi, “Reductive desorption of carboxylic-acid-terminated alkanethiol monolayers from Au(111) surfaces,” J. Electroanal. Chem., 428, 33 (1997).
[97] C. J. Zhong, J. Zak, M. D. Porter, “Voltammetric reductive desorption characteristics of alkanethiolate monolayers at single crystal Au(111) and (110) electrode surfaces,” J. Electroanal. Chem., 421, 9 (1997).
[98] M. M. Walczak, C. A. Alves, B. D. Lamp, M. D. Porter, “Electrochemical and X-ray photoelectron spectroscopic evidence for differences in the binding site of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem., 396, 103 (1995).
[99] S. S. Wong, M. D. Porter, “Origin of the multiple voltammetric desorption waves of long-chain alkanethiolate monolayers chemisorbed on annealed gold electrode,” J. Electroanal. Chem., 485, 135 (2000).
[100] W. Schottky, “Halbleitertheorie der sperrschicht,” Naturwissenschaften, 26, 843 (1938).
[101] D. A. Neamen, Semiconductor physics and devices-basic principles, 2nd edn., McGraw Hill: Boston, 2003.
[102] B. L. Sharma, Metal-semiconductor Schottky barrier junctions and their applications, Plenum press: New York, 1984.
[103] S. M. Sze, Semiconductor devices-physics and technology, 2nd edn., John Wily & Sons: New York, 2002.
[104] G. Eftekhari, “Variation in the effective Richardson constant of metal/GaAs and metal/InP contacts due to the effect of processing parameters,” Phys. Status Solidi, 140, 194 (1993).
[105] H. K. Henisch, Semiconductor contacts: an approach to ideas and models, Oxford science publications: New York, 1984.
[106] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, Oxford science publications: Oxford, U.K., 1988.
[107] B. E. Warren, X-ray diffraction, Wesley, 1969.
[108] Y. I. Chou, “Studies on fabrication, characterization and sensing of Pd/InP Schottky diode based hydrogen sensors,” doctor thesis, National Cheng-Kung University, Tainan, Taiwan (2005).
[109] F. Bensebaa, T. H. Ellis, A. Badia, R. B. Lennox, “Probing the different phases of self-assembled monolayers on metal-surfaces - temperature-dependence of the C-H stretching modes,” J. Vac. Sci. Technol. A, 13, 1331 (1995).
[110] T. Ishida, M. Hara, I. Kojima, S. Tsuneda, N. Nishida, H. Sasabe, W. Knoll, “High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au(111),” Langmuir, 14, 2092 (1998).
[111] G. R. Hutchison, M. A. Ratner, T. J. Marks, R. Naaman, “Adsorption of polar molecules on a molecular surface,” J. Phys. Chem. B, 105, 2881 (2001).