簡易檢索 / 詳目顯示

研究生: 何政達
Ho, Cheng-Ta
論文名稱: 非接觸式電漿配向技術於軟性液晶顯示器之應用
Plasma beam alignment method applied in flexible liquid crystal display
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 電漿配向水平配向塑膠基板顯示器液晶顯示器
外文關鍵詞: homogeneous alignment, plastic display, Liquid crystal displays, plasma alignment.
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 配向在液晶顯示器的製程中是一向相當重要的技術,一般的液晶顯示器是以聚醯亞胺(polyimide)作為配向膜材料,以絨毛布摩擦(Rubbing)來造成配向膜形成溝槽進而排列液晶分子,但是在配向層的塗佈與機器的摩擦過程中必然會留下些許的毛屑雜質,使得液晶顯示器在使用的過程中產生例如靜電殘留等等的問題,進而影響其光電特性的表現。因此有許多非接觸式的配向方式像是離子束(Ion Beam)、電漿(Plasma)配向或光配向(photoalignment)等非接觸式配向的方式被提出來研究,也都有不錯的效果。而在本研究中,有鑑於軟性基板液晶顯示器其輕、薄、耐衝擊並且可撓曲的優點,非常適合用於可攜式電子用品。再者,考量到連續製程的方便性及成本的降低,勢必在未來新一代的顯示器中扮演著關鍵的角色,翻閱國內外各大期刊與研討會文章如SID、IDW等,都可以看到許多領導級的企業已經投入軟性液晶顯示器產品的研發,陸陸續續也有相關的產品問世。因此我們將以塑膠基板(PolyCarbon)取代傳統的玻璃基板來進行接觸式與非接觸式配向法應用在軟性塑膠基板液晶顯示器上的研究與比較。
    而在我們的實驗中可以發現,利用適當的能量與入射方向的電漿離子對配向層進行轟擊,也同樣可以達到與摩擦配向相同的效果,此非接觸式配向的配向法可改變配向層的結構而造成液晶分子做有次序性的排列,且進一步將配向完成的上、下基板組合成液晶 盒(Liquid Crystal Cell)並量測其預傾角、電壓-穿透率曲線以及反應時間等光電特性並與傳統經由摩擦配向的樣品作比較,兩者皆有著很相似的表現,在某些光電特性電漿配向的液晶盒甚至有超越傳統製程的表現。

    To control the liquid crystals (LCs) orientation, the alignment is very important technology in the fabrication processes of liquid crystal display (LCD). Generally, the mechanically rubbed polyimide (PI) is the most use in LC cells as the material to align LC. But, there are many drawbacks of traditional rubbing for aligning LCs, including contamination of the sample, generation of static charge and scratches which would affect the electro-optical performance of the LCD. A lot of non-contact alignment techniques, such as ion-beam alignment, plasma treated alignment, and photoalignment, had been reported that they have great potential for LCs alignment. In this research, we have successfully fabricated light, thin, and impacting LCDs in flexible substrates, in which the non-contact plasma alignment technology was used. The flexible LCDs are very suitable to be used in portable electronic products, and think about the convenience and cheaper producing cost of the roll-to-roll fabrication. They must be key roles in the display of next generation. Reading a lot of important journals and conference papers, such as SID and IDW. We find many lead companies have invested the develop of flexible liquid crystal display. Therefore, the performance was compared between rubbing-aligned and plasma-aligned LCDs fabricated in plastic substrates in stead of traditional glass substrates.
    When the plasma with proper energy and incident direction bombarded the polyimide alignment layer, the optoelectronic characteristics of plasma aligned LCDs are almost the same as that of traditionally rubbed LCDs. In bending states, the LCDs aligned by non-contact plasma have ever better performance than that aligned by traditional rubbing.

    目 錄 中文摘要------------------------------------------------I ABSTRACT----------------------------------------------III 致謝----------------------------------------------------V 目錄--------------------------------------------------VII 圖目錄-------------------------------------------------IX 第1章 關於液晶----------------------------------------1 1.1 液晶簡介-----------------------------------1 1.2 液晶物理-----------------------------------2 1.2.1 折射率異方性與光學異向性-------------2 1.2.2 折射率異方性與光學性質---------------4 1.2.3 液晶的彈性連續體理論-----------------5 1.2.4 電磁場對於液晶分子的作用-------------6 1.3 VA垂直配向型液晶與TN水平配向液晶的特性-----8 1.4 液晶的配向機制與技術-----------------------9 第2章 液晶樣品的製作與光電量測----------------------14 2.1 液晶樣品的製作----------------------------14 2.2 液晶樣品的量測----------------------------25 2.2.1 預傾角-------------------------------25 2.2.2 液晶盒厚度---------------------------28 2.2.3 對比度、反應時間、電壓-穿透率--------29 第3章 實驗結果與討論--------------------------------34 3.1 預傾角的量測結果--------------------------37 3.2 液晶盒厚度的量測結果----------------------38 3.3 對比度的量測結果--------------------------44 3.4 反應時間的量測結果------------------------50 3.5 電壓–穿透率的量測結果--------------------55 第4章 結論報告與未來展望---------------------------61 4.1 結論報告與分析----------------------------61 4.2 未來展望----------------------------------64 參考文獻-----------------------------------------------66

    參考文獻

    [1] F. Reinitzer, Monatshefte fur chemie. 9, 421 (1888).

    [2] O. Iehmann, Z. physic Chem. 4, p.462 (1989).

    [3] C. W. Oseen, Trans. Faraday Soc, 29, p.883 (1993).

    [4] H. Zocher, Trans. Faraday Soc, 29, p.945 (1933).

    [5] F. C. Frank, Disc. Faraday Soc, 25, p.19 (1958).

    [6] V. Freedericksz, A. Repiewa, Z. Naturforsch, 15, p.810 (1960).

    [7] W. Maier, G. Meier, Z. Elektrochem., 65, p.556 (1961); Z. Naturforsch, 16, p.262 (1961).

    [8] D.W. Berreman, “Solid Surface Shape and the Alignment of an
    Adjacent Nematic Liquid Crystal”, Phys. Rev. Lett. 28, 1683
    (1972).

    [9] J. M. Geary, J. W. Goodby , A. R. Kmetz, J. S. Patel, “The
    Mechanism of Polymer Alignment of Liquid Crystal
    Materials”, J. Appl. Phys. 62, 4100 (1987).

    [10] D. D. Huang, E. P. Pozhidaevl, V. G. Chigrinov, H. L. Cheung,
    Y. L. Ho and H. S. Kwok, “Photo-aligned Ferroelectric Liquid
    Crystal Displays Based on Azo-dye Layers“, Displays. 25, 21
    (2004).

    [11] D. H. Choi , Y. K. Cha, “Photo-Alignment of Low- molecular
    Mass Nematic Liquid Crystals on Photochemically Bifunctional
    Chalcone-epoxy Film byIrradiation of a Linearly Polarized UV
    Light”, Bull. Korean, Chem. Soc. 23, 587 (2002).

    [12] J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P.
    Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell, “Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order”, Science 292, 2299 (2001).

    [13] P. Chaudhari, J. A. Lacey, S. C. A. Lien, J. L. Speidell, “Atomic
    Beam Alignment of Liquid crystals”, Jpn. J. Appl. Phys. 37,
    55 (1998).

    [14] P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A.
    Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H.
    Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki and Y. Shiota, “Atomic-beam Alignment of Inorganic Materials for Liquid Crystal Displays”, Nature 411, 56 (2001).

    [15] V. V. Zhurin, H. R. Kaufman and R. S. Robinson, ”Physics of
    Closed Drift Thrusters”, Plasma Sources. 8, R1–R20 (1999).

    [16] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu and O. D.
    Lavrentovich, “Planar and Tilted Uniform Alignment of Liquid
    Crystals by Plasma-treated Substrates”, Liq. Cryst. 31, 859 (2004).

    [17] J. L. Janning, Appl. Phys. Lett., 21, p.173 (1972)

    [18] 何宗曄, 國立成功大學光電工程研究所, “Ion beam processed SiO2 Film for Homogeneous Liquid Crystal Alignment”, (2005).

    [19] 松本正一、角田市良, “液晶之基礎與應用”, (1996).

    下載圖示 校內:2007-07-06公開
    校外:2007-07-06公開
    QR CODE