研究生: |
徐安 Hsu, An |
---|---|
論文名稱: |
氧化鋁/銀-殼/核奈米線陣列之製作
與其在表面增強式拉曼光譜術上之應用 Fabrication of arrayed nanowires with silver/alumina core-shell structure and its application on surface-enhanced Raman spectroscopy |
指導教授: |
崔祥辰
Chui, Hsiang-Chen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 表面增強式拉曼光譜 、核-殼結構 、多孔性陽極氧化鋁 、電化學沉積 、局域性表面電漿子 、腺嘌呤 |
外文關鍵詞: | anodic aluminum oxide, electrochemical deposition, core-shell structure, localized surface plasmon resonance, surface-enhanced Raman spectroscopy |
相關次數: | 點閱:117 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本論文中,我們探討一種特殊的銀/氧化鋁 核-殼奈米柱的製作以及其於表面增強式拉曼光譜的應用,將具有規律奈米孔洞的多孔性陽極氧化鋁薄膜以電化學沉積方式填滿銀奈米線,再結合濕式蝕刻及超音波震洗移去部份的氧化鋁及銀,即可顯露出核殼結構的奈米柱,利用特定波長的光源可以激發銀奈米柱的局域性表面電漿子,故此結構在表面電漿子相關的應用上具有極大的潛力,比如表面增強式拉曼散射應用。
經過系統性的研究,我們發現整體奈米柱的長度約為1-2微米,且互相獨立佇立於氧化鋁薄膜上,此外,銀奈米柱對光有特定波長的吸收,約於400奈米附近,而隨著光波長增加,吸收效果隨之減弱;且吸收的光越多,越容易激發局域性表面電漿子,故奈米線的存在會使拉曼增強效果更加明顯,我們將腺嘌呤附著於奈米柱上作為代測分子,並比較在532奈米及633奈米光源之下的表面增強式拉曼散射光譜,此外,這些奈米柱陣列亦包含大量的顯露面積供代測分子吸附,因此,此製作方式在光學偵測器的應用具有極大潛力。
In this thesis, we explore the fabrication of special silver/alumina core-shell nanorods and its application on surface-enhanced Raman spectroscopy (SERS). A porous anodic aluminum oxide film is used as a template whose ordered nanochannels are filled with silver nanowires by electrodeposition. Then we combine wet-etching and sonification to partially remove alumina and silver, and thus create core-shell nanorods that are exposed to the environment. Localized surface plasmons (LSPs) can be promoted inside the silver nanowires by irradiating light with certain wavelength. Therefore this structure is promising on many LSP-based technologies, such as SERS.
By systematic study, we found the lengths of nanorods are about 1-2 μm and independent on the thickness of aluminum oxide films. In addition, the light-absorption efficiency of the nanorods is wavelength dependent. Roughly speaking, absorption is maximum at ~400 nm, and gradually decreases with increasing wavelength. The more light is absorbed, the more LSPs are excited, and thus the stronger Raman-enhancing power based on the nanowires is obtained. This inference is confirmed by using adenine molecules as test samples and comparing corresponding SERS spectra under light excitation of 532 nm and 633 nm. In addition, these nanorod arrays contain large exposed surface for sample detection. As a result, this fabrication is promising on novel optical sensing.
[1.01] Tonucci R J, Justus B L, Campillo A J, et al (1992), "Nanochannel array glass", Science, 258(5083), 783-785.
[1.02] Whitney T W, Jiang J S, Searson P C, et al (1993), "Fabrication and magnetic properties of arrays of metallic nanowires ", Science, 261(5126), 1316-1319.
[1.03] Simonds J L. (1995), "Magnetoelectronics today and tomorrow ", Physics Today, 48(4), 26-32.
[1.04] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R.P.Van Duyne (2008),"Biosensing with plsmonic nanosensors", Nat. Mater. , 7, pp 442-453.
[1.05] L.L. Zhao, KL. Kelly, and G.c. Schatz (2003), "The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem., B 107, pp7343-7350.
[1.06] C. L. Haynes and R. P. Van Duyne (2001), "Nanosphere lithography: A versatile nanofabrication tool for studied if size-dependent nanoparticle optics," J. Phys. Chem., B IOS, pp5599-56 I I.
[1.07] T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien (1993): Science Vol. 261, p. 1316.
[1.08] T.L.Wade, J.E.Wegrowe (2005): Eur. Phys. J. Appl. Phys. Vol.29, p. 3.
[1.09] M.S. Bakshi, P. Sharma, T.S. Banipal (2007): Mater. Lett. Vol.61, p. 5004.
[1.10] S.K. Park, J.S. Noh, W.B. Chin, D.D. Sung (2007): Curr. Appl. Phys. Vol.7, p. 180.
[1.11] G Giallongo, C Durante, R Pilot, D Garoli, R Bozio, F Romanato, A Gennaro, G A Rizzi and G Granozzi (2012), "Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates" , NANOTECHNOLOGY, doi:10, 1088/0957.
[1.12] J. R. Anema, J. F. Li, Z. L. Yang, B. Ren, and Z.Q. Tian (2011), "Shell-Isolated Nanoparticle-Enhanced RamanSpectroscopy: Expanding theVersatility of Surface-Enhanced Raman Scattering", Annual Review of Analytical Chemistry, 1936-1327/11/0719-0129.
[1.13] M. Fleischmann, P. J. Hendra and A. J. Mcquillan (1974), Chem. Phys. Lett. 26, 163.
[1.14]G. H. Gu, J. Kim, L. Kim, and J. S. Suh (2007), "Optimum Length of Silver Nanorods for Fabrication of Hot Spots", J. Phys. Chem. C, 111, 7906-7909.
[2.01]H. Masuda, K. Fukuda (1995), "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structure of Anodic Aluminum" ,
Science,Vol. 268, No 5216, 1466-1468.
[2.02 ]J. R. Sculllly and R.G. Kelly (1986), Corrosion-NACE, Vol.42, 53.
[2.03]D. Ma, S. Li, C. Liang (2009), "Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions", Corrosion Science 51, 713–718.
[2.04] Bengough, G. D. Stuart, J. M. Brit. Patent (1923), 223,994.
[2.05]F. Li, L. Zhang, R. M. Metzger (1923), "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide" , Chem. Mater. ,vol 10, 2470-2480.
[2.06]S. Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori (2005), "Fabrication of Ideally Ordered Nanoporous Aluminum Films and Integrated Alumina Nanotubule Arrys by High-field Anodization" , Adv. Materials, 17, 2115-2119.
[2.07]V. P. Parkhutik, V. I. Shershulsky (1992), "Theoretical modelling of porous oxide 1 growth on aluminium", Appl. Phys. , 25, 1258-1263.
[2.08]O. Jessensky, F. Muller, and U. Gosele (1998) "Self-organized formation of hexagonal pore arrays in anodic alumina" , Appl. Phys. Lett. , Vol. 72, No. 10.
[2.09] Kun-Lin Yang (2007), "Fabrication of Large Area Anodic Aluminum Oxide (AAO) Array and Its Applications", National Sun Yat-sen University, Institute of Electro-Optical Engineering, Master Thesis.
[2.10]K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gosele (2008), "Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization ", ASC Nano , vol 2, 302-310.
[2.11]H. Masuda, K. Yada, A. Osaka (2008), "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution", Jpn J Appl Phys., 237, 1340-1342.
[2.12] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele (1998), "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina", Appl Phys. , No.11, 6023-6026.
[2.13] M. Jung, S.I. Mho, and H. L. Park (2006), " Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks" , Appl. Phys. , Lett. 88, 133121.
[2.14] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi (1997), "Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidizes Aluminum", Jpn. J. Appl. Phys. , Vol. 36, 7791-7795.
[2.15]C.K. Chung , M.W. Liao, H.C. Chang, C.T. Lee (2011), "Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization", Thin Solid Films, 520, 1554–1558.
[2.16] C. Y. Liu, A. Datta, N. W. Liu, C. Y. Peng, and Y. L. Wang (2004), "Order-Disorder Transition of Anodic Alumina Nanochannel Arrays Grown Under the Guidance of Focused-Ion-Beam Patterning", Appl. Phys. Lett. , Vol. 84, 2509.
[2.17] S. Shingubara, Y. Murakami, K. Morimoto, H. Sakaue, and T. akahagi (2002), "Formation of Al Nanodot Array by the Combination of Nano-Indentation and Anodic Oxidation", Mat. Res. Soc. Symp. Proc. , Vol. 705, 133.
[2.18] H. Masuda, H. Yamada, M. Saitoh, H. Asoh, M. Nakao, and T. Tamamura (1997), "Highly Ordered Nanochannel-Array Architecture in Anodic Alumina", Appl. Phys. Lett. , Vol. 71, 2770.
[2.19] H. Chik, J. M. Xu (2004), "Nanometric superlattices: non-lithographic fabrication, materials, and prospects", Materials Science and Enfgineer , R 43, 103.
[2.20] T. Goodson III, O. Varnavski, and Y. Wang (2004), "Optical properties and applications of dendrimer-metal nanocomposites" Int. Rev. Phys. Chem. ,23, 109
[2.21] Y.H. Cheng, S.Y. Cheng (2004), "Nanostructures formed by Ag nanowires", Nanotechnology , 15, 171.
[2.22] Walsh, R. J.; Chumanov, G. (2001), "Silver Coated Porous Alumina as a New Substrate for Surface-Enhanced Raman Scattering", Appl. Spectrosc, 55, 1695.
[2.23] A.J. Haes, S.L. Zou, G.C. Schatz, R.D. Van Duyne (2004), "Nanoscale Optical Biosensor - Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles", J. Phys. Chem. B, 108.
[2.24] Y. Cui, C.M. Lieber (2001), "Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks", Science, 291, 851
[2.25] Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, and U. Gosele (2003), "Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio", Chemistry of Materials, 15, 776-779.
[2.26] C.G. Wu, H. L. Lin, N.L. Shau (2006), “Magnetic nanowires via template electrodeposition,” J Solid State Electrochem, 10,198–202.
[2.27] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang (2006), "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv Mater ,18, 491.
[2.28]http://www.ceb.cam.ac.uk/pages/linear-sweep-and-cyclic-voltametry-the principles.html, Department of Chemical Engineering and Biotechnology, University of Cambridge (2013).
[2.29] X. Y. Sun, F. Q. Xu, Z. M. Li, and W. H. Zhang (2005), "Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template", Mater Chem. Phys., 90, 69-72.
[3.01] D. A. Schultz (2003), "Current Opinion in Biotechnology", 14, 13.
[3.02] http://news.bbc.co.uk/2/hi/science/nature/4443854.stm, BBC NEWS (2005).
[3.03] Ben-Chao Lau (2010), "Photo-induced Electrical Conduction of Porous Anodic Aluminum Oxide Films Embedded with Silver Nanoparticles", National Cheng Kung University, Institute of Microelectronics, Master Thesis.
[3.04] R H. Ritchie (1957), "Plasma losses by fast electrons in thin films", Phys. Rev, 106:874-81.
[3.05] Heinz Raether (1988), "Surface plasmons on smooth and rough surfaces and on gratings", Springer-Verlag Berlin Heidelberg New York.
[3.06] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin (2005), "Nano-optics of 49 surface plasmon polaritons", Phys. Reports 408, 131.
[3.07] T. Jiang, L. Shen, X. Zhang, and L. Ran (2009), "HIGH-ORDER MODES OF SPOOF SURFACE PLASMON POLARITONS ON PERIODICALLY CORRU-GATED METAL SURFACES", Progress In Electromagnetics Research M, Vol. 8, 91-102.
[3.08] Chien-Hsiang Fan (2013), "High Tolerance Photon Switch of Porous
Anodic Aluminum Oxide Film with Silver Nanoparticles", National Cheng Kung University, Department of photonics, Master Thesis.
[3.09] 邱國斌and蔡定平 (2006), "金屬表面電漿簡介," 物理雙月刊 28, 472-485.
[3.10] K. Berthold, R. A. Hopfel, and E. Gornik (1985), "Surface-Plasmon Polariton Enhanced Photoconductivity of Tunnel-Junctions in the Visible", Appl Phys Lett 46, 626-628.
[3.11] K. A. Willets and R. P. Van Duyne (2007), "Localized Surface Plasmon Resonance Spectroscopy and Sensing", Annu. Rev. Phys. Chem. 58, 267–297.
[3.12] H. M. Hiepa, T. Endob, K. Kermana, M. Chikaea, D. K. Kima, S. Yamamuraa,
Y. Takamuraa (2007), E. Tamiy,"A localized surface plasmon resonance based immunosensor for the detection of casein in milk", Science and Technology of Advanced Materials , 8, 331–338.
[3.13] Kottmann and O. Martin (2001), "Plasmon resonant coupling in metallic nanowires," Opt. Express 8.
[4.01] Ben-Chao Lau (2010), "Photo-induced Electrical Conduction of Porous Anodic Aluminum Oxide Films Embedded with Silver Nanoparticles", National Cheng Kung University, Institute of Microelectronics, Master Thesis.
[4.02] G. Giallongo, C. Durante, R. Pilot, D. Garoli, R. Bozio, F. Romanato,
A. Gennaro, G. A. Rizzi and G. Granozzi (2012), "Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates", NANOTECHNOLOGY 2012, doi:10,1088/0957-4484/23/32/325604.
[4.03] G. Hu, H. Zhang, W. Di & T. Zhao (2009), "Study on Wet Etching of AAO Template" , Applied Physics Research, Vol. 1 No. 2,78-82.