簡易檢索 / 詳目顯示

研究生: 曾鈺雯
Tseng, Yu-wen
論文名稱: 結合時空與品質考量之基礎圖徵架構設計
Basic Feature Architecture Design: An Integrated Spatio-temporal & Quality Perspective
指導教授: 洪榮宏
Hong, Jung-hong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 167
中文關鍵詞: 時空圖徵品質GML
外文關鍵詞: GML, feature, quality, spatio-temporal
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • OpenGIS技術發展關鍵要素之一為可正確建立模擬地理圖徵各類時空特性之應用綱要,而其設計必須可以滿足(1)記錄地理圖徵複雜之時空狀態,(2)以一致性的架構提供所有所需的資訊及(3)盡可能減少重複記錄內容等三項要求。經由分析地理資料必須具有的特性,本文首先歸納每一個圖徵必須至少包含識別碼、時間、空間描述、位置精度、主題屬性與主題屬性品質等六類不同之元素。根據圖徵隨時間而變化之型態分析後,本文進一步歸納提出四類基礎圖徵類別,可因應由簡單到複雜的時空現象描述。每一類基礎圖徵均包含前述之六項元素,且因應其變化型態而有特殊的內部架構設計,以避免重複紀錄。為簡化應用綱要之設計流程,本文亦透過決策樹之設計,引導設計者依其圖徵之時空及品質特性選取最適當的基礎圖徵類別。
    為促進資料的開放與互操作性,本研究提出之基礎圖徵架構將透過GML實作,應用系統發展者可透過固定方式剖析基礎於同一基礎圖徵類別之各類圖徵資料,以減低應用模組的開發成本。另一方面,所有選定地理圖徵之空間、時間與品質特性均可明確地取得,促成低成本、高效率之開放地理資訊系統環境。最後以災害資訊管理作為測試的應用領域,驗證在開放的異質資料流通環境中,本研究提出之基礎圖徵架構可成功地因應動態時空現象之模擬與應用,並能妥善地整合各資料的時空與品質資訊。

    One key component for the successful deployment of OpenGIS technology is the design of application schema that can correctly model the spatio-temporal nature of geospatial features. We argued that such a design must be able to (1) record the complex spatio-temporal status of selected features, (2) provide all required information in a consistent architecture and (3) reduce unnecessary duplicated contents as much as possible. By first analyzing the essential characteristics of geospatial data, we concluded that every feature should at least include six components, namely, identifiers, time, spatial description, positional accuracy, attribute and attribute quality. However, depending on how the feature status changes over time, the contents and architecture of necessary recorded information may be very different from one case to another. After exploring the possible scenario of recording data, four distinct primitive feature types that can appropriately deal with the modeling of simple to complex spatio-temporal phenomena are summarized. Each feature type includes all of the six abovementioned components, but has its own inner structure to avoid unnecessary duplicated data contents. To simplify the application schema design task, a decision tree is further developed to guide developers to select the most appropriate primitive feature type during application schema design.
    The proposed feature architecture is implanted in GML to allow open and interoperable interpretation. Under such circumstances, features modeling with the same primitive feature type can be parsed in the same way to reduce the cost of application development. Furthermore, the spatial, temporal and quality status of all selected geospatial features can be unambiguously acquired. The management of disaster information was chosen as the test example in this paper and the test results demonstrated the proposed primitive feature architectures can successfully adapt to the modeling and application of dynamic spatio-temporal phenomena in the future OpenGIS environment.

    目錄 摘要 ........................................... I Abstract ...................................III 致謝 ..........................................V 目錄 ....................................... VII 表目錄 .....................................IX 圖目錄 .....................................XI 第一章 緒論 ...........................1 §1. 1 研究背景 ............................1 §1.2 研究動機與目的 ....................................4 §1.3 研究流程 ................................................6 §1.4 論文架構 ................................................8 第二章 相關文獻回顧 ........................................9 §2. 1 圖徵模式化流程與傳統架構 ...........................9 §2.2 時空地理資料 ..................................................13 §2.2.1 地理現象之變化 .....................................13 §2.2.2 時空地理資料模式 .................................14 §2.3 資料品質 ..............................................................19 §2.3.1 資料品質之特性與應用需求 .....................19 §2.2.2 資料品質相關標準與應用 .........................21 §2.2.3 資料品質之變化 .........................................27 §2.4 GML於時空地理資料的應用 .............................28 第三章 基礎圖徵類別之歸納設計 .................................31 §3. 1 共同圖徵架構 .....................................................31 §3.1.1 圖徵基本共同要素 .....................................31 §3.1.2 圖徵基本描述架構 .....................................33 §3.2 圖徵變動類型之歸納 ..........................................38 §3.2.1 單一識別碼下圖徵的變動情形歸納 .........38 §3.2.2 識別碼變動時之串連操作 .........................47 §3.3 各基礎圖徵類別之基本架構 ..............................50 §3.3.1單一時間版本圖徵之基本架構 ....................50 §3.3.2時序性靜止圖徵之基本架構 ........................51 §3.3.3簡單移動圖徵之基本架構 ............................53 §3.3.4複雜移動圖徵之基本架構 ...........................54 第四章 開放式基礎圖徵描述架構之建立 .....................61 §4. 1 資料品質資訊描述架構 .....................................61 §4.1.1 階層式資料品質資訊 .................................61 §4.1.2 各資料品質階層描述方式 .........................63 §4.2 時序性資料之開放描述方式 ..............................74 §4.2.1 GML之快照描述方式 ................................75 §4.2.2 GML之時間切片描述方式 ........................75 §4.2.3 GML之動態圖徵描述方式 ........................77 §4.3 各基礎圖徵類別之描述架構 ..............................79 §4.3.1 單一時間版本圖徵之描述架構 .................79 §4.3.2 時序性靜止圖徵之描述架構 .....................80 §4.3.3 簡單移動圖徵之描述架構 .........................85 §4.3.4 複雜移動圖徵之描述架構 .........................89 §4.4 各基礎圖徵類別之處理策略 ..............................95 §4.4.1 單一時間版本圖徵之處理策略 .................95 §4.4.2 時序性靜止圖徵之處理策略 .....................99 §4.4.3 簡單移動圖徵之處理策略 .......................104 §4.4.4 複雜移動圖徵之處理策略 .......................108 第五章 系統建置與測試 .....................................115 §5. 1 整體架構 .................................................115 §5.1.1 系統整體環境 .................................115 §5.1.2 開發工具說明 .................................116 §5.1.3 介面說明 .........................................118 §5.2 測試資料說明 ..........................................122 §5.3 各類別之GML資料內容與處理方式 ...............126 §5.3.1 單一時間版本圖徵 ..........................126 §5.3.2 時序性靜止圖徵 ..............................129 §5.3.3 簡單移動圖徵 ..................................137 §5.3.4 複雜移動圖徵 ..................................140 §5.4 應用內容測試 ...........................................145 第六章 結論與未來建議 ......................................155 參考文獻 ...................................................159 自述 ........................................................167 表目錄 表2.1 各標準或製圖組織採用之資料品質項目(取自Devillers等人, 2005) ...... 22 表2.2 ISO 19113標準規範之資料品質元素與資料品質子元素 ....................... 22 表3.1 空間位置、位置精度、主題屬性與品質於描述時間內的變動情形 ..... 39 表3.2 空間與位置精度的變化情形 ............................................ 40 表3.3 空間位置與位置精度的變動情形(整理後) .................................. 41 表3.4 主題屬性與主題屬性品質的變動情形 ...................................... 41 表3.5 主題屬性與主題屬性品質的變動情形(整理後) .......................... 42 表3.6 圖徵的空間位置與主題屬性及其各自品質的交互變化情形 ................. 42 表3.7 圖徵的空間描述與主題屬性及其各自品質的交互變化歸納結果 ......... 47 表4.1 學校圖徵GML範例之處理結果 ............................................ 98 表4.2 各基礎圖徵類別處理方式比較 ........................................... 112 表5.1 基本工具列之功能說明 .................................................. 119 表5.2 颱風暨土石流災害防救應用之測試資料 .................................... 123 表5.3 颱風暨土石流災害防救應用之測試資料類別 ................................ 125 圖目錄 圖1.1 研究方法與流程 ...................................................... 7 圖2.1 模擬地理現象的三個主要步驟(修改自Burrough,1996,p8) ................. 10 圖2.2 由現實世界到概念綱要(取自ISO 19103, Figure B.2) .....................11 圖2.3 地理實體概念化的三個元素(修改自Usery, 1996) .........................12 圖2.4 5維空間的點(取自Davis與Willams, 1989) ...............................13 圖2.5 單一屬性值的時序性變化(取自Renolen, 1997a) ..........................14 圖2.6 快照模型之範例(取自Armstrong, 1998) ................................. 16 圖2.7 ESTDM之概念(取自Peuquet 與Duan, 1995) ............................... 17 圖2.8 一圖徵的版本組合範例(取自Wachowicz 與Healey , 1994) ................. 17 圖2.9 移動物件的時間切片表示方式(取自Forlizzi 等人, 2000) ................ 18 圖2.10 資料品質概念架構(取自ISO 19113, 2002) ............................. 20 圖2.11 資料品質資訊UML圖(取自ISO 19115, Figure A.4) ...................... 24 圖2.12 詮釋資料領域代碼(取自ISO 19115,Figure A.7) ....................... 25 圖2.13 特定圖徵的品質資訊(取自Yang, 2007) ................................ 26 圖2.14 宗地與林分的品質差異(取自Donaubauer等人, 2007) .................... 26 圖2.15 GML與LBS之整合應用(取自Min et al., 2005) .......................... 29 圖3.1 圖徵之六項元素架構圖 ............................................... 33 圖3.2 圖徵名稱與識別碼示意圖 ............................................. 34 圖3.3 宗地的空間位置與所有權人變化情形 ................................... 34 圖3.4 「台北市」的不同表示方式(a)以面物件表示(b)以點物件表示 ............. 35 圖3.5 類型1C示意圖 ....................................................... 44 圖3.6 類型3A示意圖 ....................................................... 45 圖3.7 類型2C示意圖 ....................................................... 46 圖3.8 類型3B示意圖 ....................................................... 46 圖3.9 類型3C示意圖 ....................................................... 47 圖3.10 圖徵識別碼變動後的關聯情形 ........................................ 48 圖3.11 使用圖徵識別碼歷史檔關聯識別碼變動前後之圖徵 ...................... 49 圖3.12 單一時間版本圖徵架構圖 ............................................ 50 圖3.13 時序性靜止圖徵架構圖 .............................................. 52 圖3.14 時序性靜止圖徵架構圖(動態屬性品質改變) ............................ 52 圖3.15 簡單移動圖徵架構圖 ................................................ 53 圖3.16 簡單移動圖徵架構圖(位置精度改變) .................................. 54 圖3.17 複雜移動圖徵架構圖 ................................................ 55 圖3.18 複雜移動圖徵架構圖(位置精度改變) .................................. 56 圖3.19 決策樹問題設計概念 ................................................ 58 圖3.20 圖徵時空種類決策樹 ................................................ 58 圖4.1 資料品質階層式架構示意圖 ........................................... 62 圖4.2 資料集階層之品質資訊描述範例(取自ISO 19139, Annex D.3) ............. 65 圖4.3 圖徵階層之品質資訊描述範例 ......................................... 67 圖4.4 整體資料品質資訊架構圖 ............................................. 68 圖4.5 學校圖徵資料集架構 ................................................. 69 圖4.6 「花蓮縣高中職校」資料之整體資料品質描述範例 ....................... 71 圖4.7 「花蓮縣高中職校」之所有品質資訊項目 ............................... 72 圖4.8 「花蓮縣高中職校」之圖徵階層資訊(繼承資料集階層之品質) ..............73 圖4.9 中央氣象局提供之累積時雨量格式(a)2008/09/27上午11時(b) 2008/09/27上午11時10分 .. 74 圖4.10 學校圖徵之snapshot範例 ............................................ 75 圖4.11 學校圖徵之時間切片範例 ............................................ 77 圖4.12 GML之動態圖徵示意圖(取自Lake, 2004) ............................... 77 圖4.13 單一時間版本圖徵之圖徵層級架構 .................................... 80 圖4.14 時序性靜止圖徵之典型圖徵層級架構 .................................. 81 圖4.15 時序性靜止圖徵之圖徵層級架構(動態屬性品質不變) ................... 82 圖4.16 時序性靜止圖徵之GML編碼範例 ..................................................... 84 圖4.17 傳統動態屬性記錄方式 ...................................................................... 85 圖4.18 簡單移動圖徵之典型圖徵層級架構 .................................................. 86 圖4.19 簡單移動圖徵之圖徵層級架構(位置精度不變) ............................... 87 圖4.20 簡單移動圖徵之GML編碼範例 ......................................................... 89 圖4.21 傳統簡單移動圖徵記錄方式 .............................................................. 89 圖4.22 複雜移動圖徵之典型描述架構 .......................................................... 90 圖4.23 複雜移動圖徵之描述架構(位置精度與動態品質皆不變動) ................ 91 圖4.24 複雜移動圖徵之GML編碼範例 ...................................... 92 圖4.25 河川流量測站之描述架構 ............................................... 94 圖4.26 雨量測站之描述架構 ....................................................... 94 圖4.27 一般地理資料之儲存方式 ............................................... 95 圖4.28 單一時間版本圖徵處理流程 ........................................... 97 圖4.29 學校圖徵與資料表內容之對應 ....................................... 99 圖4.30 時序性靜止圖徵之處理流程 ......................................... 102 圖4.31 河川流量站圖徵之處理範例 ......................................... 103 圖4.32 簡單移動圖徵之處理流程 ............................................. 106 圖4.33 飛機圖徵之處理範例 ..................................................... 107 圖4.34 複雜移動圖徵之處理流程 ............................................. 110 圖4.35 公車圖徵之處理範例 ..................................................... 111 圖4.36 單一時間版本圖徵之gml檔案(左)與時序性xml檔案(右)之結合 ....... 113 圖5.1 系統整體架構圖 ................................................................ 116 圖5.2 系統操作介面 .................................................................... 118 圖5.3 資料查詢管理浮動視窗 .................................................... 121 圖5.4 指定介面展示時間之功能 ................................................ 121 圖5.5 花蓮縣土石流潛勢溪流與集水區 .................................... 123 圖5.6 避難所資料之類型判斷流程 ............................................ 124 圖5.7 土石流潛勢溪流之GML資料內容 ................................... 128 圖5.8 土石流潛勢溪流之處理結果與展示 ................................ 129 圖5.9 河川流量站之GML資料內容 ........................................... 133 圖5.10 雨量站之GML資料內容 ................................................. 135 圖5.11 河川流量站之處理結果 .................................................. 136 圖5.12 雨量站之處理結果 .......................................................... 137 圖5.13 消防車之GML資料內容 ................................................. 139 圖5.14 消防車之處理結果 .......................................................... 140 圖5.15 薔蜜颱風動態資訊之GML資料內容 ............................. 143 圖5.16 颱風動態資訊之處理結果 .............................................. 144 圖5.17 河川流量站資料載入情形 .............................................. 145 圖5.18 仁壽橋流量站之詳細資訊 .............................................. 146 圖5.19 薔蜜颱風動態資訊載入情形 .......................................... 147 圖5.20 薔蜜颱風於特定位置之詳細資訊 .................................. 148 圖5.21 薔蜜颱風回溯至指定時間下之狀態 .............................. 149 圖5.22 和中雨量站於指定時間下之詳細資訊 .......................... 150 圖5.23 各資料於指定時間下之狀態 .......................................... 151 圖5.24 和中雨量站於指定時間之前一狀態 .............................. 152 圖5.25 薔蜜颱風中心於宜蘭縣之狀態 ...................................... 152 圖5.26 和中雨量站於2008/09/28 23時30分之狀態 ............... 153

    林信助. (2008). 開放式時空地理資料描述基本架構之研究. 國立成功大學測量及空間資訊研究所碩士論文.
    黃旭初. (2003). ISO 19100系列國際標準之系統塑模原理. 國土資訊系統通訊, 48.
    戴瑛秋. (2007). 圖徵識別之設計及流通架構研究. 國立成功大學測量及空間資訊研究所碩士論文.
    Ahn, I., & Snodgrass, R. (1986). Performance evaluation of a temporal database management system. SIGMOD Rec., 15(2), 96-107.
    Armstrong, M. P. (1988). Temporality in spatial databases. Paper presented at the GIS/LIS 88, San Antonio, Texas.
    Bakken, D. E. (2001). Middleware. from http://www.eecs.wsu.edu/~bakken/middleware.pdf
    Balley, S., Parent, C., & Spaccapietra, S. (2004). Modelling geographic data with multiple representations. International Journal of Geographical Information Science, 18(4), 327-352.
    Blasby, D. (2005). Definition - Feature from http://udig.refractions.net/confluence/display/GOWS/Definition+-+Feature
    Bruin, S. d., Bregt, A., & Ven, M. V. D. (2001). Assessing fitness for use: the expected value of spatial data sets. Geographical Information Science, 15(5), 457-471.
    Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment. Geocarto International, 1(3), 54.
    Burrough, P. A. (1996). Natural objects with indeterminate boundaries. In P. A. Burrough & A. U. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 3-28). London: Taylor & Francis.
    Chung, W., Park, S.-Y., & Bae, H.-Y. (2004). An extension of XQuery for moving objects over GML. Paper presented at the Information Technology: Coding and Computing.
    Date, C. J. (1995). An introduction to database systems, 6th Edition: Addison-Wesley.
    Davis, B. E., & Williams, R. (1989). The five dimensions of GIS. Paper presented at the GIS/LIS'89, Washington,DC.
    Devillers, R., Bdard, Y., & Jeansoulin, R. (2005). Multidimensional management of geospatial data quality information for its dynamic use within GIS. Photogrammetric Engineering and Remote Sensing, 71(2), 205-215.
    Devillers, R., Gervais, M., Bdard, Y., & Jeansoulin, R. (2002). Spatial data quality : from metadata to quality indicators and contextual end-user manual. OEEPE/ISPRS Joint Workshop on Spatial Data Quality Management.
    Donaubauer, A., Kutzner, T., & Straub, F. (2007). Towards a quality aware web processing service. from http://www.gi-tage.de/archive/2008/downloads/acceptedPapers/Papers/Donaubauer,Kutzner,Straub.pdf
    Egenhofer, M. J. (1995). Modelling conceptual neighbourhoods of topological line-region relations. International Journal of Geographical Information Science, 9(5), 555.
    Forlizzi, L. (2000). A data model and data structures for moving objects databases. Paper presented at the ACM SIGMOD Record.
    Frihida, A., Marceau, D. J., & Thriault, M. (2002). Spatio-temporal object-oriented data model for disaggregate travel behavior. Transactions in GIS, 6(3), 277-294.
    Guptill, S. C. (1999). Metadata and data catalogues. In P. A. Longley, M. F. Goodchild, D. J. Maguire & D. W. Rhind (Eds.), Geographical Information Systems (pp. 677-692): John Wiley & Sons.
    Guptill, S. C., & Morrison, J. L. (1995). Elements of spatial data quality. New York: Elsevier Science.
    Innerebner, M., Bhlen, M., & Timko, I. (2007). A web-enabled extension of a spatio-temporal DBMS. Paper presented at the 15th annual ACM international symposium on Advances in geographic information systems, Seattle, Washington.
    ISO. (1994). ISO 8402 : Quality management and quality assurance -- Vocabulary.
    ISO. (2002). ISO 19113 : Geographic information -- Quality principles.
    ISO. (2003a). ISO 19114 : Geographic information -- Quality evaluation procedures.
    ISO. (2003b). ISO 19115 : Geographic Information - Metadata.
    ISO. (2005). ISO 19103 : Geographic information -- Conceptual schema language.
    ISO. (2006). ISO 19138 : Geographic information -- Data quality measures.
    ISO. (2007). ISO 19139 : Geographic information -- Metadata -- XML schema implementation
    Lake, R., Burggraf, D. S., & Trninic, M. (2004). Geography mark-up language (GML) : foundation for the geo-web. England: John Wiley and Sons.
    Langran, G. (1992). Time in geographic information systems. London: Taylor and Francis.
    Merriam-Webster. (2009). disaster. Merriam-Webster Online Dictionary, from http://www.merriam-webster.com/dictionary/disaster
    Min, K.-W., Jang, I.-S., Cho, D.-S., & Han, E.-y. (2005). The GML data processing in open LBS platform [Electronic Version], from http://www.gmldays.com/gml2004/papers/GML_Data_in_LBS-Kyoung-WookMin.pdf
    Montanari, A., & Pernici, B. (1993). Temporal reasoning. In A. U. Tansel, J. Clifford & S. Gadia (Eds.), Temporal Databases:Theory, design, and implementation (pp. 534-562): The Benjamin/Cummings publishing company inc.
    Oskouei, A. K. (2007). Application Of GML-based geo-metadata for data quality information management and dissemination on the web. Paper presented at the 5th International Symposium for Spatial Data Quality, Enschede, The Netherlands.
    Pelekis, N., Theodoulidis, B., Kopanakis, I., & Theodoridis, Y. (2005). Literature review of spatio-temporal database models. The Knowledge Engineering Review 19(3), 235-274.
    Peng, Z.-R., & Tsou, M.-h. (2003). Internet GIS : Distributed geographic information services for the Internet and wireless networks. Hoboken, New Jersey: John Wiley and Sons.
    Peuquet, D. J., & Duan, N. (1995). An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Science, 9(1), 7 - 24.
    Renolen, A. (1997a). Conceptual modelling and spatiotemporal information systems: How to model the real world. Paper presented at the 6th Scandinavian Research Conference on GIS, Stockholm, Sweden.
    Renolen, A. (1997b). The spatio-temporal object model: A conceptual model based on ontology. Article submitted to Geoinformatica.
    Segev, A., & Shoshani, A. (1993). A temporal data model based on time sequences. In A. U. Tansel, J. Clifford & S. Gadia (Eds.), Temporal Databases:Theory, design, and implementation (pp. 248-270): The Benjamin/Cummings publishing company inc.
    Shi, W., & Zhang, M. (2000). Development of a GIS data model with spatial, temporal and attribute components based on object-oriented approach Geo-Spatial Information Science, 3(1), 17-23.
    Sistla, A. P., Wolfson, O., Chamberlain, S., & Dao, S. (1997). Modeling and querying moving objects. Paper presented at the 13th International Conference on Data Engineering.
    Tastan, H. (1999). Data quality in geographic information systems. Istanbul Technical University, Istanbul.
    Tastan, H., & Altan, M. O. (1999, June 1-4). Spatial data quality. Paper presented at the Third Turkish-German Joint Geodetic Days, Istanbul.
    Thapa, K., & Bossler, J. (1992). Accuracy of spatial data used in geographic information systems. Photogrammetric engineering and remote sensing, 58(6), 835-841.
    Usery, E. L. (1996). A conceptual framework and fuzzy set implementation for geographic. In P. A. Burrough & A. U. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 71-85). London: Taylor & Francis.
    Veregin, H. (1999). Data quality parameters. In Geographical Information Systems (pp. 177-189).
    Wachowicz, M., & Healey, R. G. (1994). Towards temporality in GIS. In M. F. Worboys (Ed.), Innovations in GIS: Taylor & Francis.
    Williams, M. H., & Dreza, O. (2004). Combining heterogeneous spatial data from distributed sources. Paper presented at the 11th International Symposium on Spatial Data Handling (SDH), Leicester, Springer.
    Yang, T. (2007). Visualisation of spatial data quality for disturbuted GIS. The University of New South Wales, Australia.
    Yuan, M. (1996). Temporal GIS amd spatio-temporal modeling. Paper presented at the International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico.
    Zhang, C., Peng, Z.-R., Li, W., & Day, M. J. (2003). GML-based interoperable geographical databases. Cartography, 32(2), 1-16.
    Zhou, C., Lu, F., & Wan, Q. (2000). A Conceptual Model for a Feature-Based Virtual Network. GeoInformatica, 4(3), 271-286.

    下載圖示 校內:立即公開
    校外:2009-07-30公開
    QR CODE