| 研究生: |
曾鈺雯 Tseng, Yu-wen |
|---|---|
| 論文名稱: |
結合時空與品質考量之基礎圖徵架構設計 Basic Feature Architecture Design: An Integrated Spatio-temporal & Quality Perspective |
| 指導教授: |
洪榮宏
Hong, Jung-hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 時空 、圖徵 、品質 、GML |
| 外文關鍵詞: | GML, feature, quality, spatio-temporal |
| 相關次數: | 點閱:120 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
OpenGIS技術發展關鍵要素之一為可正確建立模擬地理圖徵各類時空特性之應用綱要,而其設計必須可以滿足(1)記錄地理圖徵複雜之時空狀態,(2)以一致性的架構提供所有所需的資訊及(3)盡可能減少重複記錄內容等三項要求。經由分析地理資料必須具有的特性,本文首先歸納每一個圖徵必須至少包含識別碼、時間、空間描述、位置精度、主題屬性與主題屬性品質等六類不同之元素。根據圖徵隨時間而變化之型態分析後,本文進一步歸納提出四類基礎圖徵類別,可因應由簡單到複雜的時空現象描述。每一類基礎圖徵均包含前述之六項元素,且因應其變化型態而有特殊的內部架構設計,以避免重複紀錄。為簡化應用綱要之設計流程,本文亦透過決策樹之設計,引導設計者依其圖徵之時空及品質特性選取最適當的基礎圖徵類別。
為促進資料的開放與互操作性,本研究提出之基礎圖徵架構將透過GML實作,應用系統發展者可透過固定方式剖析基礎於同一基礎圖徵類別之各類圖徵資料,以減低應用模組的開發成本。另一方面,所有選定地理圖徵之空間、時間與品質特性均可明確地取得,促成低成本、高效率之開放地理資訊系統環境。最後以災害資訊管理作為測試的應用領域,驗證在開放的異質資料流通環境中,本研究提出之基礎圖徵架構可成功地因應動態時空現象之模擬與應用,並能妥善地整合各資料的時空與品質資訊。
One key component for the successful deployment of OpenGIS technology is the design of application schema that can correctly model the spatio-temporal nature of geospatial features. We argued that such a design must be able to (1) record the complex spatio-temporal status of selected features, (2) provide all required information in a consistent architecture and (3) reduce unnecessary duplicated contents as much as possible. By first analyzing the essential characteristics of geospatial data, we concluded that every feature should at least include six components, namely, identifiers, time, spatial description, positional accuracy, attribute and attribute quality. However, depending on how the feature status changes over time, the contents and architecture of necessary recorded information may be very different from one case to another. After exploring the possible scenario of recording data, four distinct primitive feature types that can appropriately deal with the modeling of simple to complex spatio-temporal phenomena are summarized. Each feature type includes all of the six abovementioned components, but has its own inner structure to avoid unnecessary duplicated data contents. To simplify the application schema design task, a decision tree is further developed to guide developers to select the most appropriate primitive feature type during application schema design.
The proposed feature architecture is implanted in GML to allow open and interoperable interpretation. Under such circumstances, features modeling with the same primitive feature type can be parsed in the same way to reduce the cost of application development. Furthermore, the spatial, temporal and quality status of all selected geospatial features can be unambiguously acquired. The management of disaster information was chosen as the test example in this paper and the test results demonstrated the proposed primitive feature architectures can successfully adapt to the modeling and application of dynamic spatio-temporal phenomena in the future OpenGIS environment.
林信助. (2008). 開放式時空地理資料描述基本架構之研究. 國立成功大學測量及空間資訊研究所碩士論文.
黃旭初. (2003). ISO 19100系列國際標準之系統塑模原理. 國土資訊系統通訊, 48.
戴瑛秋. (2007). 圖徵識別之設計及流通架構研究. 國立成功大學測量及空間資訊研究所碩士論文.
Ahn, I., & Snodgrass, R. (1986). Performance evaluation of a temporal database management system. SIGMOD Rec., 15(2), 96-107.
Armstrong, M. P. (1988). Temporality in spatial databases. Paper presented at the GIS/LIS 88, San Antonio, Texas.
Bakken, D. E. (2001). Middleware. from http://www.eecs.wsu.edu/~bakken/middleware.pdf
Balley, S., Parent, C., & Spaccapietra, S. (2004). Modelling geographic data with multiple representations. International Journal of Geographical Information Science, 18(4), 327-352.
Blasby, D. (2005). Definition - Feature from http://udig.refractions.net/confluence/display/GOWS/Definition+-+Feature
Bruin, S. d., Bregt, A., & Ven, M. V. D. (2001). Assessing fitness for use: the expected value of spatial data sets. Geographical Information Science, 15(5), 457-471.
Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment. Geocarto International, 1(3), 54.
Burrough, P. A. (1996). Natural objects with indeterminate boundaries. In P. A. Burrough & A. U. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 3-28). London: Taylor & Francis.
Chung, W., Park, S.-Y., & Bae, H.-Y. (2004). An extension of XQuery for moving objects over GML. Paper presented at the Information Technology: Coding and Computing.
Date, C. J. (1995). An introduction to database systems, 6th Edition: Addison-Wesley.
Davis, B. E., & Williams, R. (1989). The five dimensions of GIS. Paper presented at the GIS/LIS'89, Washington,DC.
Devillers, R., Bdard, Y., & Jeansoulin, R. (2005). Multidimensional management of geospatial data quality information for its dynamic use within GIS. Photogrammetric Engineering and Remote Sensing, 71(2), 205-215.
Devillers, R., Gervais, M., Bdard, Y., & Jeansoulin, R. (2002). Spatial data quality : from metadata to quality indicators and contextual end-user manual. OEEPE/ISPRS Joint Workshop on Spatial Data Quality Management.
Donaubauer, A., Kutzner, T., & Straub, F. (2007). Towards a quality aware web processing service. from http://www.gi-tage.de/archive/2008/downloads/acceptedPapers/Papers/Donaubauer,Kutzner,Straub.pdf
Egenhofer, M. J. (1995). Modelling conceptual neighbourhoods of topological line-region relations. International Journal of Geographical Information Science, 9(5), 555.
Forlizzi, L. (2000). A data model and data structures for moving objects databases. Paper presented at the ACM SIGMOD Record.
Frihida, A., Marceau, D. J., & Thriault, M. (2002). Spatio-temporal object-oriented data model for disaggregate travel behavior. Transactions in GIS, 6(3), 277-294.
Guptill, S. C. (1999). Metadata and data catalogues. In P. A. Longley, M. F. Goodchild, D. J. Maguire & D. W. Rhind (Eds.), Geographical Information Systems (pp. 677-692): John Wiley & Sons.
Guptill, S. C., & Morrison, J. L. (1995). Elements of spatial data quality. New York: Elsevier Science.
Innerebner, M., Bhlen, M., & Timko, I. (2007). A web-enabled extension of a spatio-temporal DBMS. Paper presented at the 15th annual ACM international symposium on Advances in geographic information systems, Seattle, Washington.
ISO. (1994). ISO 8402 : Quality management and quality assurance -- Vocabulary.
ISO. (2002). ISO 19113 : Geographic information -- Quality principles.
ISO. (2003a). ISO 19114 : Geographic information -- Quality evaluation procedures.
ISO. (2003b). ISO 19115 : Geographic Information - Metadata.
ISO. (2005). ISO 19103 : Geographic information -- Conceptual schema language.
ISO. (2006). ISO 19138 : Geographic information -- Data quality measures.
ISO. (2007). ISO 19139 : Geographic information -- Metadata -- XML schema implementation
Lake, R., Burggraf, D. S., & Trninic, M. (2004). Geography mark-up language (GML) : foundation for the geo-web. England: John Wiley and Sons.
Langran, G. (1992). Time in geographic information systems. London: Taylor and Francis.
Merriam-Webster. (2009). disaster. Merriam-Webster Online Dictionary, from http://www.merriam-webster.com/dictionary/disaster
Min, K.-W., Jang, I.-S., Cho, D.-S., & Han, E.-y. (2005). The GML data processing in open LBS platform [Electronic Version], from http://www.gmldays.com/gml2004/papers/GML_Data_in_LBS-Kyoung-WookMin.pdf
Montanari, A., & Pernici, B. (1993). Temporal reasoning. In A. U. Tansel, J. Clifford & S. Gadia (Eds.), Temporal Databases:Theory, design, and implementation (pp. 534-562): The Benjamin/Cummings publishing company inc.
Oskouei, A. K. (2007). Application Of GML-based geo-metadata for data quality information management and dissemination on the web. Paper presented at the 5th International Symposium for Spatial Data Quality, Enschede, The Netherlands.
Pelekis, N., Theodoulidis, B., Kopanakis, I., & Theodoridis, Y. (2005). Literature review of spatio-temporal database models. The Knowledge Engineering Review 19(3), 235-274.
Peng, Z.-R., & Tsou, M.-h. (2003). Internet GIS : Distributed geographic information services for the Internet and wireless networks. Hoboken, New Jersey: John Wiley and Sons.
Peuquet, D. J., & Duan, N. (1995). An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Science, 9(1), 7 - 24.
Renolen, A. (1997a). Conceptual modelling and spatiotemporal information systems: How to model the real world. Paper presented at the 6th Scandinavian Research Conference on GIS, Stockholm, Sweden.
Renolen, A. (1997b). The spatio-temporal object model: A conceptual model based on ontology. Article submitted to Geoinformatica.
Segev, A., & Shoshani, A. (1993). A temporal data model based on time sequences. In A. U. Tansel, J. Clifford & S. Gadia (Eds.), Temporal Databases:Theory, design, and implementation (pp. 248-270): The Benjamin/Cummings publishing company inc.
Shi, W., & Zhang, M. (2000). Development of a GIS data model with spatial, temporal and attribute components based on object-oriented approach Geo-Spatial Information Science, 3(1), 17-23.
Sistla, A. P., Wolfson, O., Chamberlain, S., & Dao, S. (1997). Modeling and querying moving objects. Paper presented at the 13th International Conference on Data Engineering.
Tastan, H. (1999). Data quality in geographic information systems. Istanbul Technical University, Istanbul.
Tastan, H., & Altan, M. O. (1999, June 1-4). Spatial data quality. Paper presented at the Third Turkish-German Joint Geodetic Days, Istanbul.
Thapa, K., & Bossler, J. (1992). Accuracy of spatial data used in geographic information systems. Photogrammetric engineering and remote sensing, 58(6), 835-841.
Usery, E. L. (1996). A conceptual framework and fuzzy set implementation for geographic. In P. A. Burrough & A. U. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 71-85). London: Taylor & Francis.
Veregin, H. (1999). Data quality parameters. In Geographical Information Systems (pp. 177-189).
Wachowicz, M., & Healey, R. G. (1994). Towards temporality in GIS. In M. F. Worboys (Ed.), Innovations in GIS: Taylor & Francis.
Williams, M. H., & Dreza, O. (2004). Combining heterogeneous spatial data from distributed sources. Paper presented at the 11th International Symposium on Spatial Data Handling (SDH), Leicester, Springer.
Yang, T. (2007). Visualisation of spatial data quality for disturbuted GIS. The University of New South Wales, Australia.
Yuan, M. (1996). Temporal GIS amd spatio-temporal modeling. Paper presented at the International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico.
Zhang, C., Peng, Z.-R., Li, W., & Day, M. J. (2003). GML-based interoperable geographical databases. Cartography, 32(2), 1-16.
Zhou, C., Lu, F., & Wan, Q. (2000). A Conceptual Model for a Feature-Based Virtual Network. GeoInformatica, 4(3), 271-286.