| 研究生: |
洪郁婷 Hung, Yu-Ting |
|---|---|
| 論文名稱: |
電磁懸浮熔煉技術中線圈設計對金屬球懸浮力的影響:數值模擬系統建立及其實驗驗證 Development of a Numerical System and its Experimental Validation on the Effect of Coil Design on Levitation Force of Metal Ball in Electromagnetic Levitation Smelting Technique |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 電磁懸浮 、懸浮熔煉 、感應加熱 、數值模擬 、線圈設計 |
| 外文關鍵詞: | levitation melting, magnetic levitation, induction heating, numerical simulation, coil design |
| 相關次數: | 點閱:81 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電磁懸浮熔煉 (Electromagnetic Levitation, EML) 為一種將金屬材料於懸浮狀態下加熱的熔煉技術,該製程結合電磁懸浮、電磁攪拌和感應加熱等技術,在加熱、熔化和凝固過程中其熔煉材料皆不需與容器接觸,可避免容器帶來的汙染,熔煉出高純度的材料。
影響EML製程的主要因素為加熱頻率和線圈設計,頻率影響加熱速率與均勻性,線圈設計影響懸浮加熱之位置,但加熱頻率受限於機台,線圈設計因此為影響EML製程的指標。若以傳統的試誤 (Trial and error) 方式進行參數改良,會耗費許多成本與人力,故本研究採用電腦數值模擬技術進行EML製程之模擬。目標在於建立其數值模擬系統,探討線圈設計對懸浮力的影響,內容包含電磁場、懸浮力、平衡高度和溫度場分布。
模擬結果利用熔煉過程的實驗結果進行驗證,可以分成三個部分:第一部分為鋼球和鈦球於線圈A和B下的懸浮高度,模擬與實驗有一致的高度位置。第二部份為大小顆鋼球於線圈A下的懸浮力,模擬與實驗具有相同的趨勢,當電流值增加,浮力值也有增加的趨勢,而且大顆鋼球的浮力值約為小顆鋼球的兩倍左右,驗證了電磁場的可信度。第三部分為鈦球於線圈B下的溫度,同樣是加熱190秒,模擬溫度為1402 oC,實驗為1421 oC,誤差百分比為1.3%,驗證了模擬溫度場系統的可信度。
另外,模擬建立線圈C和D隨高度變化的懸浮力,並預測其懸浮的高度,同時比較線圈A、B、C和D的設計,得到線圈的匝數與上下排間距是影響金屬球平衡高度的主要因素,而線圈纏繞直徑影響則較小。
Electromagnetic levitation (EML) technique uses alternative currents generate electromagnetic field and Lorentz force which induces eddy currents and thus, it leads to lifting and to heating the metal sample at the same time. In this study, we considered magnetic field and heat transfer in solid by using the commercial numerical simulation software, COMSOL Multiphysics®, in order to develop a numerical simulation model to investigate the effect of coil design in EML process. Simulation results agree with the experimental results of electromagnetic distribution, levitation force, the height in equilibrium and the thermal distribution of metal ball. Considering the coil design composed of the upper part and the lower part, it can conclude as follows: increasing the turns of the upper part and decreasing the gap of coil between the upper and the lower part results in decreasing the equilibrium height. In addition the winding of the upper part is not the main influence in equilibrium.
1. Muck, O., Verfahren und Vorrichtung zum Schmelzen, insbesondere von Leitern u. dgl. durch elektrische Induktionsstroeme, in German Pat. 1925.
2. Okress, E., Wroughton, D., Comenetz, G., Brace, P., and Kelly, J., Electromagnetic levitation of solid and molten metals. Journal of Applied Physics, 1952. 23: p. 545-552.
3. Comenetz, G. and Solatka, J., Ten‐Gram Levitation‐Melted lngots. Journal of The Electrochemical Society, 1958. 105: p. 673-676.
4. Harris, B., B.Sc., Jenkins, A.E., and .Met.E., B., Controlled atmosphere levitation system. Journal of Scientific Instruments, 1959. 36: p. 238-240.
5. Brisley, W. and Thornton, B., Electromagnetic levitation calculations for axially symmetric systems. British Journal of Applied Physics, 1963. 14: p. 682-686.
6. Piggott, L. and Nix, G., Electromagnetic levitation of a conducting cylinder. Proceedings of the Institution of Electrical Engineers, 1966. 113 p. 1229-1235.
7. Bocian, E.S. and Young, F.J., Some stability considerations in levitation melting. Journal of The Electrochemical Society, 1971. 118: p. 2021-2026.
8. Krishnan, S., Hansen, G.P., Hauge, R.H., and Margrave, J.L., Observations on the dynamics of electromagnetically levitated liquid metals and alloys at elevated temperatures. Metallurgical Transactions A, 1988. 19: p. 1939-1943.
9. Fromm, E. and Jehn, H., Electromagnetic forces and power absorption in levitation melting. British Journal of Applied Physics, 1965. 16: p. 653-663.
10. 魏炳波 and 杨根仓, 高频电磁悬浮熔炼的设计与实践. 航空学报, 1988. 9: p. 589-589.
11. Sun, H. and Pehlke, R.D., Coil Design For Lower Temperature Levitation Melting of Iron Alloys. High Temperature Materials and Processes, 2000. 19: p. 41-46.
12. Gao, L., Shi, Z., Li, D., Zhang, G., Yang, Y., McLean, A., and Chattopadhyay, K., Applications of Electromagnetic Levitation and Development of Mathematical Models: A Review of the Last 15 Years (2000 to 2015). Metallurgical and Materials Transactions B, 2016. 47: p. 537-547.
13. Li, L.X., Zhao, J.L., and Guan, X.M. Measurement of Growth Kinetics of Deeply Undercooled Zr50Cu50 Melt by Electromagnetic Levitation Technique. Applied Mechanics and Materials. 2014. 513: p.56-59.
14. Fujii, H., Matsumoto, T., and Nogi, K., Analysis of surface oscillation of droplet under microgravity for the determination of its surface tension. Acta materialia, 2000. 48: p. 2933-2939.
15. Kobatake, H., Khosroabadi, H., and Fukuyama, H., Normal spectral emissivity of stable and undercooled liquid silicon using electromagnetic levitation in a dc magnetic field. Measurement Science and Technology, 2010. 22: p. 1-7.
16. Mohammadi, A.V. and Halali, M., Synthesis and characterization of pure metallic titanium nanoparticles by an electromagnetic levitation melting gas condensation method. RSC Advances, 2014. 4: p. 7104-7108.
17. 漆庭邦, 曹枨, 段永达, 赵承义, and 齐天民, 悬浮熔融法测定金属中的氮含量. 冶金分析, 1983. 3: p. 138-141.
18. Nishifuji, M., Ono, A., and Chiba, K., Determination of hydrogen in steel by using a levitation melting method. Analytical Chemistry, 1996. 68: p. 3300-3303.
19. Roy, A.A., Easter, S., Bojarevics, V., and Pericleous, K., Use of a static magnetic field in measuring the thermal conductivity of a levitated molten droplet. Journal of Algorithms & Computational Technology, 2012. 6: p. 153-172.
20. Tsukada, T., Fukuyama, H., and Kobatake, H., Determination of thermal conductivity and emissivity of electromagnetically levitated high-temperature droplet based on the periodic laser-heating method: Theory. International journal of heat and mass transfer, 2007. 50: p. 3054-3061.
21. Bojarevics, V. and Hyers, R.W., Levitated liquid dynamics in reduced gravity and gravity-compensating magnetic fields. Journal of The Minerals, Metals & Materials Society, 2012. 64: p. 1089-1096.
22. Essmann, U. and Kiessig, H., Preparation of metals in ultra high vacuum by electromagnetic levitation. Materials Research Bulletin, 1979. 14: p. 1139-1145.
23. Bojarevics, V. and Pericleous, K., Modelling electromagnetically levitated liquid droplet oscillations. ISIJ international, 2003. 43: p. 890-898.
24. Asakuma, Y., Sakai, Y., Hahn, S., Tsukada, T., Hozawa, M., Matsumoto, T., Fujii, H., Nogi, K., and Imaishi, N., Equilibrium shape of a molten silicon drop in an electromagnetic levitator in microgravity environment. Metallurgical and Materials Transactions B, 2000. 31: p. 327-329.
25. Kermanpur, A., Jafari, M., and Vaghayenegar, M., Electromagnetic-thermal coupled simulation of levitation melting of metals. Journal of Materials Processing Technology, 2011. 211: p. 222-229.
26. Royer, Z.L., Tackes, C., LeSar, R., and Napolitano, R.E., Coil optimization for electromagnetic levitation using a genetic like algorithm. Journal of Applied Physics, 2013. 113: p. 214901.
27. Feng, L. and Shi, W.-Y., The Influence of Eddy Effect of Coils on Flow and Temperature Fields of Molten Droplet in Electromagnetic Levitation Device. Metallurgical and Materials Transactions B, 2015. 46: p. 1895-1901.
28. Zong, J.-H., Szekely, J., and Schwart, E., An improved computational technique for calculating electromagnetic forces and power absorptions generated in spherical and deformed body in levitation melting devices. IEEE transactions on magnetics, 1992. 28: p. 1833-1842.
29. Djellabi, K. and Latreche, M.E.H., Induction-Heating-Process-Design-Using-Comsol-Multiphysics-Software-Version-42a. World Academy of Science, Engineering and Technology, 2014. 8: p. 72-75.
30. Roy, A., Bojarevics, V., and Pericleous, K., Multi-physics modeling in the electromagnetic levitation and melting of reactive metals. 2011.
31. 王永清, 李雷, 周金香, 李小佳, and 王海舟, 电磁悬浮熔炼技术的发展及其在金属中气体分析领域的应用. 冶金分析, 2008. 28: p. 1-1.
32. Begley, R.T., Comenetz, G., Flinn, P.A., and Salatka, J.W., Vacuum levitation melting. Review of Scientific Instruments, 1959. 30: p. 39-39.
33. 钟晓燕 and 陈佳圭, 空间电磁悬浮技术的发展状况. 物理, 1996. 25: p. 565-570.
34. 李孝伟, 高频电磁场悬浮熔炼研究. 电炉, 1981. 6: p. 20-26.
35. Moghimi, Z.A., Halali, M., and Nusheh, M., An Investigation on the Temperature and Stability behavior in the levitation melting of nickel. Metallurgical And Materials Transactions B, 2006. 37b: p. 997-1005.
36. 王晓冬, 商凯东, 巴德纯, and 王冬, 电磁悬浮熔炼系统的结构及其悬浮力的研究. 真空, 2006. 43: p. 26-29.
37. 邰显康, 云月厚, and 刘学东, 电磁悬浮技术中导体元受电磁力的计算. 内蒙古大学学报: 自然科学版, 2002. 33: p. 145-148.
38. Ma, W.-z., Zheng, H.-x., Ji, C.-c., and Li, J.-g., Effect of sample radius on stability of electromagnetic levitation melting. Journal of Central South University of Technology, 2004. 11: p. 31-35.
39. Clemente, R. and Tessarotto, M., Minima of dissipated power in magnetic levitation. Journal of applied physics, 1998. 83: p. 588-591.
40. Przyborowski, M., Hibiya, T., Eguchi, M., and Egry, I., Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation. Journal of Crystal Growth, 1995. 151: p. 60-65.
41. Reitz, J.R., Milford, F.J., and Christy, R., Foundations of Electromagnetic Theory 3ed. 1979, New Jersey, U.S.A: Addison Wesley.
42. Donea, J., Giuliani, S., and Philippe, A., Finite elements in the solution of electromagnetic induction problems. International Journal for Numerical Methods in Engineering, 1974. 8: p. 359-367.
43. Clarksean, R. and Chen, Y., Development of a Model for Induction Heating. 2002: p. 1-10.
44. Incropera, F.P., Lavine, A.S., Bergman, T.L., and DeWitt, D.P., Principles of heat and mass transfer. 7 ed. 2013, New York, U.S.A.: Wiley.