| 研究生: |
劉卜慈 Liu, Pu-Sin |
|---|---|
| 論文名稱: |
利用假性狂犬病毒攜帶腺病毒相關病毒Rep和Cap基因的方法產生腺病毒相關病毒載体 Development of a new method using pseudorabies virus carrying AAV Rep and Cap genes for production of AAV vector |
| 指導教授: |
楊啟瑞
Yang, Chi-Rei 楊文宏 Yang, Wen-Cho 蔡宗欣 Tsai, Cho-Chi 吳昭良 Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 重組腺病毒相關病毒 、缺陷性病毒 、重組腺病毒相關病毒 、載体 、重組腺病毒相關病毒 |
| 外文關鍵詞: | AAV, rAAV, vector, PRV |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
所謂基因治療就是將特定基因送入體內,以改善或彌補體內基因的缺陷。目前最重要的是發展如何有效地將基因傳送入體內。基因傳送載体主要可以區分為病毒和非病毒性載体。而腺病毒相關病毒 (adeno-associated virus; AAV) 載体是最近被廣泛注意用於人類基因治療的傳送載体。本研究目的著重於發展腺病毒相關病毒載体。發展腺病毒相關病毒當作基因傳送載體,主要是根據其生物特性。腺病毒相關病毒是一種具有單股DNA的極小病毐 (parvovirus),其可以感染多種類細胞和組織,不論是分裂或未分裂中細胞,且對人無致病性。而且其缺少野生種病毒基因,所以能減少對細胞的毒性和免疫性,利用此病毒載体優點是:其為一種缺陷性病毒須要有其它幫助病毒 (helper virus) 協助下才能組裝成具有感染性病毒顆粒,否則感染細胞時只會嵌入細胞染色体,而造成潛伏狀態,也因此能長期表現其所攜帶之治療基因。然而目前有很多用來產生重組腺病毒相關病毒載体方法,在本研究中,我們發展新的方法去產生腺病毒相關病毒載体。為了有效產生腺病毒相關病毒載体,利用假性狂犬病毒攜帶腺病毒相關病毒的Rep和Cap基因,去產生腺病毒相關病毒載体。此假性狂犬病毒攜帶腺病毒相關病毒的Rep和Cap基因的病毒將之命名為“ PS ”病毒。此從假性狂犬病毒所衍生出來的gD、gE和TK突變的缺陷性PS病毒,具有輔助和複製功能,可用來幫助重組腺病毒相關病毒。當將pSub201/EGFP和PS病毒共同轉染293細胞時,可產生重組腺病毒相關病毒。為了能每次皆能成功地產生重組腺病毒相關病毒,我們針對其操作歩驟中: pSub20l/EGFP的轉入效率和所須加入PS病毒濃度做定量。找出其理想濃度來順利產生重組腺病毒相關病毒。然而利用此標準操作方式成功產出攜帶前胸腺素(prothymosin a)基因的重組腺病毒相關病毒,更證明其在細胞內具有功能,且將其感染小鼠肌肉,也會表現此蛋白。總之,在未來我們可以利用此方法來產生帶有任何基因之重組腺病毒相關病毒應用在基因治療上。
A number of vector systems have been developed for the purpose of gene transfer including both viral and non-viral delivery vehicles. Adeno-associated virus (AAV) attracts wide attention as a potential human gene therapy vector. The advantages of this vector system are that it is naturally defective; AAV infects a wide variety of cell and tissue types and it readily integrates into the target cell’s genome and is considered to be nonpathogenic. The absence of all wild-type coding proteins bypasses the cellular toxicity often observed with other viral vectors and has potential for long-term therapeutic gene expression. There are several methods to generate recombinant AAV (rAAV) vectors. In this study, we report a novel method to produce rAAV vectors. In order to facilitate the production of rAAV vector, pseudorabies virus (PrV) was engineered to express the AAV Rep and Cap genes, yielding PS virus. The PS virus, a gD/gE/TK triple mutant derived from a recombinant PrV, was used as a helper and packaging virus for generating rAAV stocks. Cotransfection of the PS virus together with pSub201/EGFP into 293 cells resulted in the production rAAV expressing GFP. We determined the optimal conditions of pSub201/EGFP DNA transfection efficiency and multiplicity of infection of the PS virus for rAAV production. Furthermore, we produced rAAV expressing prothymsin α (ProTα) protein using the same method. Expressions of proTα protein in vitro and in vivo through rAAV/ProTα gene delivery were detectable by immunohistochemistry, demonstrating that this system worked. In the future, other genes of interest can be successfuliy constructed into rAAV by this method.
Bantel-Schaal,U. and zur,H.H. (1984). Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 134, 52-63.
Bartlett,J.S., Wilcher,R., and Samulski,R.J. (2000). Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J. Virol. 74, 2777-2785.
Bueler,H. (1999). Adeno-associated viral vectors for gene transfer and gene therapy. Biol. Chem. 380, 613-622.
Drittanti,L., Rivet,C., Manceau,P., Danos,O., and Vega,M. (2000). High throughput production, screening and analysis of adeno-associated viral vectors. Gene Ther. 7, 924-929.
Funato,T. (1998). [Gene delivery using adeno-associated (AAV) vectors]. Nippon Rinsho 56, 701-704.
Hallek,M. and Wendtner,C.M. (1996). Recombinant adeno-associated virus (rAAV) vectors for somatic gene therapy: recent advances and potential clinical applications. Cytokines Mol. Ther. 2, 69-79.
Hermonat,P.L. and Muzyczka,N. (1984). Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc. Natl. Acad. Sci. U. S. A 81, 6466-6470.
Holscher,C., Horer,M., Kleinschmidt,J.A., Zentgraf,H., Burkle,A., and Heilbronn,R. (1994). Cell lines inducibly expressing the adeno-associated virus (AAV) rep gene: requirements for productive replication of rep-negative AAV mutants. J. Virol. 68, 7169-7177.
Laughlin,C.A., Tratschin,J.D., Coon,H., and Carter,B.J. (1983). Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23, 65-73.
Li,J., Samulski,R.J., and Xiao,X. (1997). Role for highly regulated rep gene expression in adeno-associated virus vector production. J. Virol. 71, 5236-5243.
Liu,X., Voulgaropoulou,F., Chen,R., Johnson,P.R., and Clark,K.R. (2000). Selective Rep-Cap gene amplification as a mechanism for high-titer recombinant AAV production from stable cell lines. Mol. Ther. 2, 394-403.
Liu,X.L., Clark,K.R., and Johnson,P.R. (1999). Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther. 6, 293-299.
Pereira,D.J., McCarty,D.M., and Muzyczka,N. (1997). The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection. J. Virol. 71, 1079-1088.
Peeters,B., Pol,J., Gielkens,A., and Moormann,R. (1993). Envelope glycoprotein gp50 of pseudorabies virus is essential for virus entry but is not required for viral spread in mice. J. Virol. 67, 170-177.
Peeters,B., de Wind,N., Hooisma,M., Wagenaar,F., Gielkens,A., and Moormann,R. (1992). Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J. Virol. 66, 894-905.
Robbins,P.D. and Ghivizzani,S.C. (1998). Viral vectors for gene therapy. Pharmacol. Ther. 80, 35-47.
Rochlitz,C.F. (2001). Gene therapy of cancer. Swiss. Med. Wkly. 131, 4-9.
Tratschin,J.D., West,M.H., Sandbank,T., and Carter,B.J. (1984). A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol. Cell Biol. 4, 2072-2081.
Xiao,X., Li,J., and Samulski,R.J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224-2232.
Zhang,H., Chen,Q., Wei,E.H., and Cai,H.J. (2000). Expression of Reverse Cholesterol Transport Pathway Associated Protein Genes in Skeletal Muscle. Sheng Wu Hua Xue. Yu Sheng Wu Wu Li Xue. Bao. (Shanghai) 32, 109-114.
Zhao,N., Liu,D.P., and Liang,C.C. (2001). Hot topics in adeno-associated virus as a gene transfer vector. Mol. Biotechnol. 19, 229-237.
Ali,R.R., Reichel,M.B., Thrasher,A.J., Levinsky,R.J., Kinnon,C., Kanuga,N., Hunt,D.M., and Bhattacharya,S.S. (1996). Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum. Mol. Genet. 5, 591-594.
Mulder,W., Pol,J., Kimman,T., Kok,G., Priem,J., and Peeters,B. (1996). Glycoprotein D-negative pseudorabies virus can spread transneuronally via direct neuron-to-neuron transmission in its natural host, the pig, but not after additional inactivation of gE or gI. J. Virol. 70, 2191-2200.
Chirico,J. and Trempe,J.P. (1998). Optimization of packaging of adeno-associated virus gene therapy vectors using plasmid transfections. J. Virol. Methods 76, 31-41.
Chirmule,N., Propert,K., Magosin,S., Qian,Y., Qian,R., and Wilson,J. (1999). Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 6, 1574-1583.
Clark,K.R., Voulgaropoulou,F., Fraley,D.M., and Johnson,P.R. (1995). Cell lines for the production of recombinant adeno-associated virus. Hum. Gene Ther. 6, 1329-1341.
Conrad,C.K., Allen,S.S., Afione,S.A., Reynolds,T.C., Beck,S.E., Fee-Maki,M., Barrazza-Ortiz,X., Adams,R., Askin,F.B., Carter,B.J., Guggino,W.B., and Flotte,T.R. (1996). Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Ther. 3, 658-668.
Conway,J.E., Zolotukhin,S., Muzyczka,N., Hayward,G.S., and Byrne,B.J. (1997). Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap. J. Virol. 71, 8780-8789.
Kessler,P.D., Podsakoff,G.M., Chen,X., McQuiston,S.A., Colosi,P.C., Matelis,L.A., Kurtzman,G.J., and Byrne,B.J. (1996). Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. U. S. A 93, 14082-14087.
Shiau,A.L., Liu,C.W., Wang,S.Y., Tsai,C.Y., and Wu,C.L. (2002). A simple selection system for construction of recombinant gD-negative pseudorabies virus as a vaccine vector. Vaccine 20, 1186-1195.
Smith-Arica,J.R. and Bartlett,J.S. (2001). Gene therapy: recombinant adeno-associated virus vectors. Curr. Cardiol. Rep. 3, 43-49.
Walsh,C.E. and Chao,H. (2002). Parvovirus-mediated gene transfer for the haemophilias. Haemophilia. 8 Suppl 2, 60-67.
Weindler,F.W. and Heilbronn,R. (1991). A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication. J. Virol. 65, 2476-2483.
Williams,D.A., Nienhuis,A.W., Hawley,R.G., and Smith,F.O. (2000). Gene Therapy 2000. Hematology. (Am. Soc. Hematol. Educ. Program. ) 376-393.
周錦洪。人類前胸腺激素單株抗體的製備和應用。國立成功大學生物化學研究所碩士論文中華民國86年6月.
校內:2094-08-06公開