| 研究生: |
施順堯 Shih, Shun-Iuo |
|---|---|
| 論文名稱: |
殘留SrMoO4對Sr2FeMoO6磁阻效應之影響及Sr2Fe2-xMoxO6的磁性和導電機構之研究 Effect of Residual SrMoO4 on Magnetoresistance of Sr2FeMoO6 and Studies of Magnetism and Conductive Mechanism of Sr2Fe2-xMoxO6 |
| 指導教授: |
方滄澤
Fang, Tsang-Tse |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 磁阻 、導電性 、磁性 |
| 外文關鍵詞: | magnetism, magnetoresistance, conductivity |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同比例的SrFeO2.97與SrMoO4作為固態反應法之前導粉末合成Sr2FeMoO6。在SrFeO2.97:SrMoO4=0.9:1及0.8:1的Sr2FeMoO6試片中,觀察到殘留SrMoO4相的存在。然而,我們發現在含有殘留SrMoO4相的Sr2FeMoO6試片中有較高的電阻率及較低的飽和磁化量,但卻擁有較高的低場磁阻效應(LFMR)。且發現殘留SrMoO4相是以類似非晶質型態的nano-sized cluster存在於晶粒中而非在晶界處。此外,我們也在含有殘留SrMoO4相的Sr2FeMoO6試片中觀察到anti-phase boundaries(APB)的存在。提昇電阻率及LFMR的可能機制,可被歸咎於在APB的自旋相依電子散射(spin-dependent scattering)所引起。
在探討Sr2Fe2-xMoxO6磁性及導電機構方面,隨著Mo添加量的增加,Fe3+-O2--Mo5+反鐵磁偶也相對的增加,因而其飽和磁化量也越大。而電性則由於Fe3+-O2--Mo5+傳導帶的混成軌域之增加,因此導電性也隨之而提昇了。此外,藉由Mott的可變程跳躍(VRH )傳導理論可以合理的解釋Sr2Fe2-xMoxO6在低溫時的電性傳導機制,而在高溫則是符合熱激活化之小極化子跳躍(SPH)傳導機制。
In this study, different ratios of the precursor phases of SrFeO2.97 and SrMoO4 were used to prepare Sr2FeMoO6 by a solid-state reaction technique. The residual SrMoO4 was observed to exist in the samples with SrFeO2.97/ SrMoO4 ratio of 0.9 : 1 and 0.8:1. It was found that the sample with a residual SrMoO4 phase had higher resistivity, lower magnetization, but higher low field magnetoresistance (LFMR). It was found that nano-sized amorphous-like clusters of SrMoO4 phase were located inside the grains rather than at grain boundaries. Besides, anti-phase boundaries (APB) were observed in all samples of Sr2FeMoO6 with residual SrMoO4 phase. The possible mechanism for the conduction and LFMR of Sr2FeMoO6 is attributed to spin-dependent scattering at the unusual APB.
The study of magnetism and conductive mechanism of Sr2Fe2-xMoxO6, with doping content of Mo increase, thus leading to antiferromagnetic coupling increase, and consequentially enhance the saturation magnetization. The linkage of Fe3+-O2--Mo5+ which leads to the formation of a narrow band results in enhancing the conductivity. Furthermore, the low temperature conductivity can be explained away by Mott’s variable range hopping (VRH) mechanism while the high temperature conductivity is contributed to the thermally activated small polaron hopping (SPH) mechanism.
1. Soshin Chikazumi著, 張煦、李學養譯, “磁性物理學” , 聯經出版社, (1982).
2. W. Eerenstein, T. T. M. Palstra, S. S. Saxena, and T. Hibma, Phys. Rev. Lett. 88, 247204 (2002).
3. D. Niebieskikwiat, R. D. Sanchez, A. Caneiro, L. Morales, M. Vasquez-Mansilla, F. Rivadulla, and L. E. Hueso, Phys. Rev. B. 62, 3340 (2000).
4. H. A. Kramers, Physica. 1, 182 (1934).
5. P. W. Anderson, Phys. Rev. 79, 350 (1950).
6. 汪建民, “陶瓷技術手冊(上)” , 中華民國粉末冶金協會, 569 (1994).
7. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chaxeles, Phys. Rev. Lett. 61, 2472 (1988).
8. “中華民國磁性技術協會”, 會訊第16期 (1999).
9. G. Binasch, P. Grunberg, F. Saurenbach and W. Zinn, Phys. Rev. B. 39, 4828 (1989).
10. A. E. Berkowitz et al., Phys. Rev. Lett. 68, 3745 (1992).
11. C. L. Chien, F. Y. Yang, Kai Liu, D. H. Reich and P. C. Searson J. Appl. Phys. 87, 4659 (2000).
12. T. A. Rabedeau, M. F. Toney, R. F. Marks, S. S. P. Parkin, R. F. C. Farrow and G. R. Harp, Phys. Rev. B. 48, 16810 (1993).
13. “中華民國磁性技術協會”, 會訊第12期 (1997).
14. “工業材料”, 129, 138 (1997).
15. J. E. Lennard-Jones, Trans. Faraday Soc. 28, 33 (1932).
16. N. F. Mott, “Metal-Insulator Transitions” p.50 (1990).
17. T. Nakagawa, J. Phys. Soc. Jpn. 24, 806 (1968).
18. H. D. Megaw, Proc. Phys. Soc. 58, 133 (1946).
19. T. Nakamura, K. Kunihara, and Y. Hirose, Mater. Res. Bull. 16, 321 (1981).
20. F. S. Galasso, “Structure, Properties and Preparation of Perovskite- type Compounds,” Pergamon Press, New York (1969).
21. S. Nakayama, T. Nakagawa, and S. Nomura, J. Phys. Soc. Jpn. 24, 219 (1968).
22. T. T. Fang, M. S. Wu, and T. F. Ko, J. Mater. Sci. Lett. 20, 1609 (2001).
23. J. B. MacChesney, R. C. Sherwood, and J. F. Petter, J. Chem. Phys. 43, 1907 (1965);P. K. Gallagher, J. B. MacChesney, and D. N. E. Buchanan, J. Chem. Phys. 41, 2429 (1964).
24. B. C. Tofield, C. Greaves, and B. E. F. Fender, Mater. Res. Bull. 10, 737 (1975) ; B. C. Tofield, React. Solids [Proc. Int. Symp.] 8th,253 (1976).
25. T. Takeda, Y. Yamaguchi, S. Tomiyoshi, M. Fukase, M. Sugimoto and H. Watanabe, J. Phys. Soc. Japan, 24, 446 (1968).
26. N. Ea, Thèse Docteur 3em cycle, Université de Bordeaux 1 (1983);J. C. Grenier, N. Ea, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 58, 243 (1985).
27. S. Shin, and M. Yonemura, Mat. Res. Bull. 13, 1017 (1978).
28. A. W. Sleight and R. Ward, J. Am. Chem. Soc. 83 ,1088 (1961).
29. A. W. Sleight, J. M. Longo, and R. Ward, Inorg. Chem. 1, 245 (1962).
30. R. P. Borges, R. M. Thomas, C. Cullinam, J. M. D. Coey, R. Suryanarayanan, L. Ben-Dor, L. Pinsard-Gaudart, and A. Revcolevschi, J. Phys. : Condens. Matter. 11, L445 (1999).
31. F. K. Patterson, C. W. Moeller and R. Ward, Inorg. Chem. 2, 196 (1963).
32. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature, 395, 667 (1998).
33. C.N.R. Rao, B. Raveau, “Colossal Magnetoresistance, Charge Or- dering and Related Properties of Manganese Oxides,” World Scientific, 179 (1998).
34. M. Ziese, Rep. Prog. Phys. 65 (2), 151 (2002).
35. Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, and K.-I. Kobayashi, Phys. Rev. B. 61, 422 (2000).
36. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
37. T. Kise, T. Ogasawara, M. Ashida, Y. Tomioka, Y. Tokura, and M. Kuwata-Gonokami, Phy. Rev. Lett. 85, 1986 (2000).
38. P. Woodward, R. D. Hoffmann, and A. W. Sleight, J. Mater. Res. 9, 2118 (1994).
39. Li. Balcells, J. Navarro, M. Bibes, A. Roig, B. Martý´nez, and J. Fontcuberta, Appl. Phys. Lett. 78, 781 (2001).
40. D. D. Sarma, E. V. Sampathkumaran, S. Ray, R. Nagarajan, S. Majumdar, A. Kumar, G. Nalini, and T. N. Guru Row, Solid State Commun. 114, 465 (2000).
41. D. Sanchez, J. A. Alonso, M. G. Hernandez, M. J. Martinez-Lope, J. L. Martinez, A. Mellergard, Phys. Rev. B. 65, 104426 (2002).
42. Y. Moritomo, N. Shimamoto, X. Xu, A. Machida, E. Nishibori, M. Takata, M. Sakata and A. Nakamura, Jpn. J. Appl. Phys. 40, L672 (2001).
43. H. Asano, S. B. Ogale, J. Garrison, A. Orozco, E. Li, Y. H. Li, V. Smolyaninova, C. Galley, M. Downes, M. Rajeswari, R. Ramesh, and T. Venkatesan, Appl. Phys. Lett. 74, 3696 (1999).
44. A. S. Ogale, S. B. Ogale, R. Ramesh, and T. Venkatessan, Appl. Phys. Lett. 75, 537 (1999).
45. 張慶瑞、衛榮漢, 物理雙月刊 25卷, 3期, 390頁 (2003).
46. A. L. Efros and B. I. Shklovskii, J. Phys. C8, L49 (1975).
47. 柯尊發, 碩士論文, 國立成功大學材料科學及工程學系, p.65, 民國91年7月.
48. 林容成, 碩士論文, 國立成功大學材料科學及工程學系, p.97, 民國92年7月.
49. D. Niebieskikwiat, A. Caneiro, and R. D. Sanchez., Phys. Rev. B. 64, 180406 (2001).
50. C. L. Yuan, Y. Zhu, and P. P. Ong, Appl. Phys. Lett. 82, 934 (2003).
51. K. Wang and Y. Sui, Solid State Commun. 129, 135 (2004).
52. H. Q. Yin, J.-S. Zhou, J.-P. Zhou, R. Dass, J. T. McDevitt, and J. B. Goodenough, Appl. Phys. Lett. 75, 2812 (1999).
53. A. Maignan, C. Martin, M. Hervieu, and B. Raveau, J. Magn. Magn. Mater. 211, 173 (2000).
54. M. Venkatesan et al, J. Mater. Chem. 12, 2184 (2002).
55. C. L. Yuan, S. G. Wang, W. H. Song, T. Yu, J.M. Dai, S. L. Ye, and Y. P. Sun, Appl. Phys. Lett. 75, 3853 (1999).
56. M. García-Hernández, J. L. Martinez-Lope, M. T. Casais, and J. A. Alonso, Phys. Rev. Lett. 86, 2443 (2001).
57. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Phys. Rev. B. 59, 11159 (1999).
58. T. H. Kim, M. Uehara, and S-W. Cheong, Appl. Phys. Lett. 74, 1737 (1999).
59. A. Sharma et al, Appl. Phys. Lett. 83, 2384 (2003).
60. N. F. Mott, “Metal-Insulator Transitions”, p.35 (1974).
61. T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).
62. D. Emin and T. Holstein, Ann. Phys. (N.Y.) 53, 439 (1969).
63. G. Y. Liu, G. H. Rao, X. M. Feng, H. F. Yang, Z. W. Ouyang, W. F. Liu and J. K. Liang, J. Alloys Compd. 353, 42 (2003).
64. T. T. Fang and T. F. Ko, J. Am. Ceram. Soc. 86, 1453 (2003).
65. J. Hombo, Y. Matsumoto and T. Kawano, J. Solid State Chem. 84, 138 (1990).
66. T. T. Fang and J. C. Lin, Accepted by J. Am. Ceram. Soc. (2004).
67. G. Thomas and M. J. Goringe, “Transmission Electron Microscopy of Materials”, p.170 (1979).
68. B. Fultz and J. M. Howe, “Transmission Electron Microscopy and Diffractometry of Materials”, p.407 (2002).
69. D. T. Margulies, F. T. Parker, M. L. Rudee, F. E. Spada, J. N. Chapman, P. R. Aitchison, and A. E. Berkowitz, Phys. Rev. Lett. 79, 5162 (1997).
70. T. Hibma, F. C. Voogt, and L. Niesen, P. A. A. van der Heijden, W. J. M. de Jonge, J. J. T. M. Donkers and P. J. van der Zaag, J. Appl. Phys. 85, 5291 (1999).
71. H. Wang, Y. I. Jang and Y. M. Chiang, Electrochem. Solid-State Lett. 2, 490 (1999).
72. J. Navarro, L. Balcells, F. Sandiumenge, M. Bibes, A. Roig, B. Martinez and J. Fontcuberta, J. Phys. : Condens. Matter. 13, 8481 (2001).
73. P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997).
74. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).