簡易檢索 / 詳目顯示

研究生: 陳彥廷
Chen, Yan-Ting
論文名稱: 探討PTX3 C端抗體對TKI治療肝癌時改善心臟功能的可能性與其機轉
Investigating the mechanism of Pentraxin 3 C-terminal antibody in improving the cardiac function of hepatocellular carcinoma patients after tyrosine kinase inhibitor treatment
指導教授: 劉秉彥
Lu, Ping-Yen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 46
中文關鍵詞: 心肌細胞肝癌酪氨酸激酶抑製劑索拉非尼五聯蛋白 3QT間期粒線體呼吸功能鈉電流細胞凋亡細胞骨架收縮功能
外文關鍵詞: cardiomyocyte, hepatocellular carcinoma, tyrosine kinase inhibitor, sorafenib, pentraxin 3, QTc prolongation, mitochondria respiration, sodium current, apoptosis, cytoskeleton, contractile function
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    在現今醫療高度發展的社會下,經由免疫療法和酪氨酸激酶抑製劑藥物的治療已經顯著提高了癌症的存活率。然而這些藥物對心血管系統的毒性尚不清楚,因此在癌症治療後監測心臟功能至關重要。肝癌在台灣與全球是最常見的癌症之一,最近研究發現肝癌患者在經由酪氨酸激酶抑製劑治療後心臟功能會受到不同程度的損傷。五聯蛋白 3是長五聯蛋白家族的成員,具有保守的C 端五聯蛋白結構域,類似於典型的短型五聯蛋白,如C 反應蛋白。五聯蛋白 3是由 CCAAT/增強子結合蛋白直接調控的基因。先前研究發現肝癌的患者血液中的五聯蛋白 3濃度明顯高於健康人。先前的動物模型中也可發現抑制五聯蛋白 3可以修復心肌肥厚與左心室功能障礙。因此我們的目的是將五聯蛋白 3抗體作為一種新藥用來改善酪氨酸激酶抑製劑治療肝癌後所造成心臟功能受損。我們本次題目使用幹細胞分化成的心肌細胞來找出索拉非尼引起的心臟損傷的分子機制,並藉由酪氨酸激酶抑製劑抑制劑來修復索拉非尼造成的心臟損傷。
    我們首先使用酵素連結免疫吸附分析法分析了肝癌病患血液中的五聯蛋白 3濃度, 並用心臟超音波或心電圖確定了酪氨酸激酶抑製劑治療後肝癌患者的心臟功能。接著我們使用30天到40天的幹細胞分化的心肌細胞來進行實驗。在本次研究中我們發現酪氨酸激酶抑製劑 治療的 肝癌患者血液中的五聯蛋白 3表現量顯著高於未接受 酪氨酸激酶抑製劑治療的肝癌患者,並且發現在酪氨酸激酶抑製劑治療後有38%的男性與33%的女性有發生QT間期延長的情況發生。我們進一步找出 CD44 是心肌細胞中五聯蛋白 3的受體。索拉非尼治療會使心肌細胞的細胞骨架重構、收縮減少、鈉電流抑制以及線粒體呼吸功能障礙。索拉非尼造成心臟毒性的機制受ERK-JNK信號通路調控,索拉非尼降低ERK1/2,增加細胞凋亡下游蛋白表達。藉由抑制五聯蛋白 3可以改善細胞凋亡相關的蛋白表達、細胞骨架斷裂、心肌細胞收縮功能異常和線粒體呼吸功能障礙。整體來說五聯蛋白 3抑制劑治療可修復索拉非尼引起的心臟功能受損。

    關鍵字: 心肌細胞、肝癌、酪氨酸激酶抑製劑、、索拉非尼、五聯蛋白 3、QT間期、粒線體呼吸功能、鈉電流、細胞凋亡、細胞骨架、收縮功能

    Nowadays, treatment of cancer, including immunotherapy and tyrosine kinase inhibitor (TKI) drugs, has significantly improved the survival rate of cancer. However, their toxicity to the cardiovascular system is unclear. Therefore, it is essential to monitor the heart function after cancer treatment. Hepatocellular carcinoma (HCC) is currently one of the most common cancers in Taiwan and the world. Recent studies have found that after TKI treatment, the heart function of patients with HCC suffered from varying degrees of damage. Pentraxin 3 (PTX3) is one member of the long pentraxin family with a conserved C-terminal pentraxin domain, similar to typical short pentraxins, such as C-reactive protein (CRP), and the structure of PTX3 is similar to CRP. PTX3 is a gene directly regulated by CCAAT/enhancer binding protein delta (CEBPD). Previous studies have shown that the plasma concentration of PTX3 in patients with HCC was significantly higher than healthy people. In animal models, it was also found that inhibiting PTX3 could repair myocardial hypertrophy and left ventricular dysfunction. Therefore, we purposed that PTX3 inhibitor could be used as a new drug to improve the heart dysfunction of HCC patients after TKI treatment. We thus used stem cell-derived cardiomyocytes to find out the molecular mechanism of heart damages caused by sorafenib treatment, which were restored of PTX3 inhibitor.
    We first used ELISA to analyze the concentration of PTX3 in the plasma of HCC patients, and used cardiac echo or electrocardiogram to determine the cardiac function of HCC patients after TKI treatment. Then we used stem cells to derive them into cardiomyocytes and used 30-40 days of derived cardiomyocytes for experiments. In this study, we found that the expression of PTX3 plasma levels patients with TKI treatment was significantly higher than the HCC patients without TKI treatment. We also found that QTc prolongation appeared in 38% of male and 33% of female patients after TKI treatment. We further defined that CD44 could be a PTX3 receptor in cardiomyocytes. The treatment of sorafenib caused the cytoskeleton remodeling, decreasing in contraction, inhibition of sodium current, as well as the mitochondria respiration dysfunction in cardiomyocytes. The mechanism of sorafenib-induced cardiotoxicity was regulated by ERK-JNK signaling pathway. Sorafenib decreased ERK1/2 and increased apoptosis downstream signaling pathway. Treatment with PTX3 inhibitor could repair the cardiac dysfunction caused by sorafenib.

    Key Words: cardiomyocyte, hepatocellular carcinoma, tyrosine kinase inhibitor, sorafenib, pentraxin 3, QTc prolongation, mitochondria respiration, sodium current, apoptosis, cytoskeleton, contractile function

    Table of content 誌謝 II Abstract VII 中文摘要 VIII Abbreviations IX Introduction 1 1-1 Hepatocellular carcinoma 1 1-2 Treatment for hepatocellular carcinoma 1 1-3 Sorafenib therapy-related cardiotoxicity 3 1-4 Pentraxin 3 4 1-5 Pentraxin 3 related cardiac dysfunction 4 1-6 Human-induced polypotent stem cell-derived cardiomyocyte for drug screening and disease modeling 5 1-7 Research motivation 6 1-8 Hypothesis 7 Material and methods 8 2-1 cell culture 8 2-2 Cardiomyocytes differentiation 8 2-3 Flow Cytometry 9 2-4 MTT assay 9 2-5 Immunocytochemistry 10 2-6 Protein extraction and Bicinchoninic acid (BCA) protein assay 10 2-7 Western blot 11 2-8 RNA isolation and reverse transcription 12 2-9 Real-time quantitative PCR (RT-qPCR) 13 2-10 Enzyme-linked immunosorbent assay (ELISA) 13 2-11 Seahorse assay 14 2-12 Contractility Analysis 14 2-13 Electrophysiological Measurements 15 2-14 Statistical Analysis 15 Results 16 3-1 Generation and characterization of hiPSC/hESC-dervied cardiomyocytes. 16 3-2 HCC patients after TKI treatment were increased PTX3 level and consistent with our in vitro studies. 16 3-3 Sorafenib caused cardiomyocytes cytoskeleton remodeling and be improved by PTX3 inhibitor. 17 3-4 Sorafenib caused cardiomyocytes contraction dysfunction and be improved by PTX3 inhibitor. 18 3-5 Sorafenib caused cardiomyocytes mitochondria respiratory dysfunction and be improved by PTX3 inhibitor. 18 3-6 Sorafenib induced cardiomyocytes mitochondria respiratory dysfunction and apoptosis by ERK JNK signaling pathway and be improved by PTX3 inhibitor. 19 3-7 Sorafenib impaired cardiomyocytes action potential and was not improved by PTX3 inhibitor immediately. 20 Discussion 21 References 24 Figures 33 Figure 1 | Establishment and validation of cardiomyocytes in vitro. 33 Figure 2 | The expression of PTX3 in HCC patients and culture medium. 34 Figure 3 | Effects of sorafenib on cell viability in RUES2-CMs, AFSC-IPS-CMs and SC8-1103-CMs. 36 Figure 4 | Validation of PTX3 capturing by CD44 on the cardiomyocytes. 37 Figure 5 | Effect of sorafenib on actin filaments in cardiomyocytes. 38 Figure 6 | Recapitulating the phenotype of TKI-induced cardiac dysfunction with cardiomyocytes. 39 Figure 7 | Assessment of the effect of TKI and PTX3 inhibitor on mitochondrial respiration in cardiomyocytes. 40 Figure 8 | Effects of sorafenib, PTX3 inhibitor and ERK inhibitor treatment on RUES2-CMs and MAPK proteins family expression. 41 Figure 9 | Effects of sorafenib, PTX3 inhibitor and ERK inhibitor treatment on SC8-1103-CMs and MAPK proteins family expression. 43 Figure 10 | ERK inhibitor, PD098059, also impaired mitochondrial respiration in cardiomyocytes. 44 Figure 11 | Effects of sorafenib and PTX3 inhibitor on patch clamp assay in RUES2-CMs. 45 Figure 12 | Summary illustration of sorafenib-induced cardiac dysfunction mechanism. 46

    1. (November 14, 2018 ) New projections of mortality and causes of death to year 2060.
    2. Younossi, Z., Stepanova, M., Ong, J. P., Jacobson, I. M., Bugianesi, E., Duseja, A., Eguchi, Y., Wong, V. W., Negro, F., Yilmaz, H. Y., Romero-Gomez, M., George, J., Ahmed, A., Wong, R., Younossi, I., Ziayee, M., Afendy, A., and Global Nonalcoholic, S. (2019) Nonalcoholic Steatohepatitis Is the Fastest Growing Cause of Hepatocellular Carcinoma in Liver Transplant Candidates. Clinical Gastroenterology and Hepatology 17, 748- 755
    3. Peng, Z. W., Guo, R. P., Zhang, Y. J., Lin, X. J., Chen, M. S., and Lau, W. Y. (2012) Hepatic resection versus transcatheter arterial chemoembolization for the treatment of hepatocellular carcinoma with portal vein tumor thrombus. Cancer 118, 4725-4736
    4. Chow, P. K. H., Gandhi, M., Tan, S. B., Khin, M. W., Khasbazar, A., Ong, J., Choo, S. P., Cheow, P. C., Chotipanich, C., Lim, K., Lesmana, L. A., Manuaba, T. W., Yoong, B. K., Raj, A., Law, C. S., Cua, I. H. Y., Lobo, R. R., Teh, C. S. C., Kim, Y. H., Jong, Y. W., Han, H. S., Bae, S. H., Yoon, H. K., Lee, R. C., Hung, C. F., Peng, C. Y., Liang, P. C., Bartlett, A., Kok, K. Y. Y., Thng, C. H., Low, A. S. C., Goh, A. S. W., Tay, K. H., Lo, R. H. G., Goh, B. K. P., Ng, D. C. E., Lekurwale, G., Liew, W. M., Gebski, V., Mak, K. S. W., Soo, K. C., and Asia-Pacific, H. (2018) SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. Journal of Clinical Oncology 36, 1913-1921
    5. Edeline, J., Crouzet, L., Campillo-Gimenez, B., Rolland, Y., Pracht, M., Guillygomarc'h, A., Boudjema, K., Lenoir, L., Adhoute, X., Rohou, T., Boucher, E., Clement, B., Blanc, J. F., and Garin, E. (2016) Selective internal radiation therapy compared with sorafenib for hepatocellular carcinoma with portal vein thrombosis. European Journal of Nuclear Medicine and Molecular Imaging 43, 635-643
    6. Vilgrain, V., Pereira, H., Assenat, E., Guiu, B., Ilonca, A. D., Pageaux, G. P., Sibert, A., Bouattour, M., Lebtahi, R., Allaham, W., Barraud, H., Laurent, V., Mathias, E., Bronowicki, J. P., Tasu, J. P., Perdrisot, R., Silvain, C., Gerolami, R., Mundler, O., Seitz, J. F., Vidal, V., Aube, C., Oberti, F., Couturier, O., Brenot-Rossi, I., Raoul, J. L., Sarran, A., Costentin, C., Itti, E., Luciani, A., Adam, R., Lewin, M., Samuel, D., Ronot, M., Dinut, A., Castera, L., Chatellier, G., and Grp, S. T. (2017) Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncology 18, 1624-1636
    7. Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., de Oliveira, A. C., Santoro, A., Raoul, J. L., Forner, A., Schwartz, M., Porta, C., Zeuzem, S., Bolondi, L., Greten, T. F., Galle, P. R., Seitz, J. F., Borbath, I., Haussinger, D., Giannaris, T., Shan, M., Moscovici, M., Voliotis, D., Bruix, J., and Grp, S. I. S. (2008) Sorafenib in advanced hepatocellular carcinoma. New England Journal of Medicine 359, 378-390
    8. Marrero, J. A., Kudo, M., Venook, A. P., Ye, S. L., Bronowicki, J. P., Chen, X. P., Dagher, L., Furuse, J., Geschwind, J. F. H., de Guevara, L. L., Papandreou, C., Takayama, T., Sanyal, A. J., Yoon, S. K., Nakajima, K., Lehr, R., Heldner, S., and Lencioni, R. (2016) Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. Journal of Hepatology 65, 1140-1147
    9. Kudo, M., Finn, R. S., Qin, S., Han, K. H., Ikeda, K., Piscaglia, F., Baron, A., Park, J. W., Han, G., Jassem, J., Blanc, J. F., Vogel, A., Komov, D., Evans, T. R. J., Lopez, C., Dutcus, C., Guo, M., Saito, K., Kraljevic, S., Tamai, T., Ren, M., and Cheng, A. L. (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163-1173
    10. Bruix, J., Qin, S. K., Merle, P., Granito, A., Huang, Y. H., Bodoky, G., Pracht, M., Yokosuka, O., Rosmorduc, O., Breder, V., Gerolami, R., Masi, G., Ross, P. J., Song, T. Q., Bronowicki, J. P., Ollivier-Hourmand, I., Kudo, M., Cheng, A. L., Llovet, J. M., Finn, R. S., LeBerre, M. A., Baumhauer, A., Meinhardt, G., Han, G. H., and Resorce, I. (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56-66
    11. Abou-Alfa, G. K., Meyer, T., Cheng, A. L., El-Khoueiry, A. B., Rimassa, L., Ryoo, B. Y., Cicin, I., Merle, P., Chen, Y. H., Park, J. W., Blanc, J. F., Bolondi, L., Klumpen, H. J., Chan, S. L., Zagonel, V., Pressiani, T., Ryu, M. H., Venook, A. P., Hessel, C., Borgman-Hagey, A. E., Schwab, G., and Kelley, R. K. (2018) Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. New England Journal of Medicine 379, 54-63
    12. Buchbinder, E. I., and Desai, A. (2016) CTLA-4 and PD-1 Pathways Similarities, Differences, and Implications of Their Inhibition. American Journal of Clinical Oncology-Cancer Clinical Trials 39, 98-106
    13. Keating, G. M., and Santoro, A. (2009) Sorafenib A Review of its Use in Advanced Hepatocellular Carcinoma. Drugs 69, 223-240
    14. Cervello, M., Bachvarov, D., Lampiasi, N., Cusimano, A., Azzolina, A., McCubrey, J. A., and Montalto, G. (2012) Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 11, 2843-2855
    15. Haas, N. B., Manola, J., Ky, B., Flaherty, K. T., Uzzo, R. G., Kane, C. J., Jewett, M., Wood, L., Wood, C. G., Atkins, M. B., Dutcher, J. J., Wilding, G., and DiPaola, R. S. (2015) Effects of Adjuvant Sorafenib and Sunitinib on Cardiac Function in Renal Cell Carcinoma Patients without Overt Metastases: Results from ASSURE, ECOG 2805. Clinical Cancer Research 21, 4048-4054
    16. Choueiri, T. K., Schutz, F. A. B., Je, Y. J., Rosenberg, J. E., and Bellmunt, J. (2010) Risk of Arterial Thromboembolic Events With Sunitinib and Sorafenib: A Systematic Review and Meta-Analysis of Clinical Trials. Journal of Clinical Oncology 28, 2280-2285
    17. Escudier, B. (2007) Sorafenib in advanced clear-cell renal-cell carcinoma (vol 356, pg 125, 2007). New England Journal of Medicine 357, 203-203
    18. Shah, R. R., Morganroth, J., and Shah, D. R. (2013) Cardiovascular Safety of Tyrosine Kinase Inhibitors: With a Special Focus on Cardiac Repolarisation (QT Interval). Drug Safety 36, 295-316
    19. Kloth, J. S. L., Pagani, A., Verboom, M. C., Malovini, A., Napolitano, C., Kruit, W. H. J., Sleijfer, S., Steeghs, N., Zambelli, A., and Mathijssen, R. H. J. (2015) Incidence and relevance of QTc-interval prolongation caused by tyrosine kinase inhibitors. British Journal of Cancer 112, 1011-1016
    20. Chi, J. Y., Hsiao, Y. W., Li, C. F., Lo, Y. C., Lin, Z. Y., Hong, J. Y., Liu, Y. M., Han, X., Wang, S. M., Chen, B. K., Tsai, K. K., and Wang, J. M. (2015) Targeting chemotherapy-induced PTX3 in tumor stroma to prevent the progression of drug-resistant cancers. Oncotarget 6, 23987-24001
    21. Russell, D. L., and Robker, R. L. (2007) Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Human Reproduction Update 13, 289-312
    22. Garlanda, C., Bottazzi, B., Magrini, E., Inforzato, A., and Mantovani, A. (2018) PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair, and cancer. Physiological Reviews 98, 623-639
    23. Klouche, M., Peri, G., Knabbe, C., Eckstein, H. H., Schmid, F. X., Schmitz, G., and Mantovani, A. (2004) Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells. Atherosclerosis 175, 221-228
    24. Manuela Nebuloni , F. P., Pietro Zerbi, Eleonora Lauri, Alberto Mantovani, Luca Vago, Cecilia Garlanda. (2010) PTX3 expression in the heart tissues of patients with myocardial infarction and infectious myocarditis. Cardiovascular Pathology, e27-e35
    25. Matsubara, J., Sugiyama, S., Nozaki, T., Sugamura, K., Konishi, M., Ohba, K., Matsuzawa, Y., Akiyama, E., Yamamoto, E., Sakamoto, K., Nagayoshi, Y., Kaikita, K., Sumida, H., Kim-Mitsuyama, S., and Ogawa, H. (2011) Pentraxin 3 Is a New Inflammatory Marker Correlated With Left Ventricular Diastolic Dysfunction and Heart Failure With Normal Ejection Fraction. Journal of the American College of Cardiology 57, 861-869
    26. Latini, R., Gullestad, L., Masson, S., Nymo, S. H., Ueland, T., Cuccovillo, I., Vardal, M., Bottazzi, B., Mantovani, A., Lucci, D., Masuda, N., Sudo, Y., Wikstrand, J., Tognoni, G., Aukrust, P., Tavazzi, L., Investigators Controlled, R., and Trial, G. I.-H. F. G.-H. (2012) Pentraxin-3 in chronic heart failure: the CORONA and GISSI-HF trials. European Journal of Heart Failure 14, 992-999
    27. Suzuki, S., Shishido, T., Funayama, A., Netsu, S., Ishino, M., Kitahara, T., Sasaki, T., Katoh, S., Otaki, Y., Watanabe, T., Shibata, Y., Mantovani, A., Takeishi, Y., and Kubota, I. (2013) Long Pentraxin PTX3 Exacerbates Pressure Overload-Induced Left Ventricular Dysfunction. Plos One 8, e53133
    28. Zakrzewski, W., Dobrzynski, M., Szymonowicz, M., and Rybak, Z. (2019) Stem cells: past, present, and future. Stem Cell Research & Therapy 10
    29. Loukogeorgakis, S. P., and De Coppi, P. (2017) Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 35, 1663-1673
    30. Liu, X. S., Huang, J. Y., Chen, T., Wang, Y., Xin, S. M., Li, J., Pei, G., and Kang, J. H. (2008) Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Research 18, 1177-1189
    31. Zuppinger, C. (2019) 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Frontiers in Cardiovascular Medicine 6
    32. Gao, L., Gregorich, Z. R., Zhu, W. Q., Mattapally, S., Oduk, Y., Lou, X., Kannappan, R., Borovjagin, A. V., Walcott, G. P., Pollard, A. E., Fast, V. G., Hu, X. Y., Lloyd, S. G., Ge, Y., and Zhang, J. Y. (2018) Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation 137, 1712-1730
    33. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., Yankelson, L., Aronson, D., Beyar, R., and Gepstein, L. (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardiol performance in infrcted rat hearts. Journal of the American College of Cardiology 50, 1884-1893
    34. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147
    35. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676
    36. Laflamme, M. A., and Murry, C. E. (2011) Heart regeneration. Nature 473, 326-335
    37. Sala, L., van Meer, B. J., Tertoolen, L. G. J., Bakkers, J., Bellin, M., Davis, R. P., Denning, C., Dieben, M. A. E., Eschenhagen, T., Giacomelli, E., Grandela, C., Hansen, A., Holman, E. R., Jongbloed, M. R. M., Kamel, S. M., Koopman, C. D., Lachaud, Q., Mannhardt, I., Mol, M. P. H., Mosqueira, D., Orlova, V. V., Passier, R., Ribeiro, M. C., Saleem, U., Smith, G. L., Burton, F. L., and Mummery, C. L. (2018) MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo. Circulation Research 122, e5-e16
    38. Carmo, R. F., Aroucha, D., Vasconcelos, L. R. S., Pereira, L., Moura, P., and Cavalcanti, M. S. M. (2016) Genetic variation in PTX3 and plasma levels associated with hepatocellular carcinoma in patients with HCV. Journal of Viral Hepatitis 23, 116-122
    39. Anan A. Abu Rmilah, G. L., Kebede H. Begna, Paul A. Friedman, Joerg Herrmann. (2020) Risk of QTc prolongation among cancer patients treated with tyrosine kinase inhibitors. International Journal of Cancer, 3160-3167
    40. Rene H. Quintanilla, J., Joanna S. T. Asprer, Candida Vaz, Vivek Tanavde, and Uma Lakshmipathy (2014) CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming. PLoS One, e85419
    41. Sharma, A., Burridge, P. W., McKeithan, W. L., Serrano, R., Shukla, P., Sayed, N., Churko, J. M., Kitani, T., Wu, H. D., Holmstrom, A., Matsa, E., Zhang, Y., Kumar, A., Fan, A. C., del Alamo, J. C., Wu, S. M., Moslehi, J. J., Mercola, M., and Wu, J. C. (2017) High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine 9, eaaf2584
    42. Wang, H., Sheehan, R. P., Palmer, A. C., Everley, R. A., Boswell, S. A., Ron-Harel, N., Ringel, A. E., Holton, K. M., Jacobson, C. A., Erickson, A. R., Maliszewski, L., Haigis, M. C., and Sorger, P. K. (2019) Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Systems 8, 412-426
    43. Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., Ambartsumyan, G., Aimiuwu, O., Richter, L., Zhang, J., Khvorostov, I., Ott, V., Grunstein, M., Lavon, N., Benvenisty, N., Croce, C. M., Clark, A. T., Baxter, T., Pyle, A. D., Teitell, M. A., Pelegrini, M., Plath, K., and Lowry, W. E. (2009) Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures. Cell Stem Cell 5, 111-123
    44. Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., Herb, B., Ladd-Acosta, C., Rho, J. S., Loewer, S., Miller, J., Schlaeger, T., Daley, G. Q., and Feinberg, A. P. (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics 41, 1350-U1123
    45. Hu, B. Y., Weick, J. P., Yu, J. Y., Ma, L. X., Zhang, X. Q., Thomson, J. A., and Zhang, S. C. (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America 107, 4335-4340
    46. Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., Seyfarth, M., Sinnecker, D., Schomig, A., and Laugwitz, K. L. (2010) Patient-Specific Induced Pluripotent Stem-Cell Models for Long-QT Syndrome. New England Journal of Medicine 363, 1397-1409
    47. Sun, N., Yazawa, M., Liu, J. W., Han, L., Sanchez-Freire, V., Abilez, O. J., Navarrete, E. G., Hu, S. J., Wang, L., Lee, A., Pavlovic, A., Lin, S., Chen, R., Hajjar, R. J., Snyder, M. P., Dolmetsch, R. E., Butte, M. J., Ashley, E. A., Longaker, M. T., Robbins, R. C., and Wu, J. C. (2012) Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy. Science Translational Medicine 4
    48. Kim, C., Wong, J., Wen, J. Y., Wang, S. R., Wang, C., Spiering, S., Kan, N. G., Forcales, S., Puri, P. L., Leone, T. C., Marine, J. E., Calkins, H., Kelly, D. P., Judge, D. P., and Chen, H. S. V. (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494, 105-110
    49. Schmidinger, M., Zielinski, C. C., Vogl, U. M., Bojic, A., Bojic, M., Schukro, C., Ruhsam, M., Hejna, M., and Schmidinger, H. (2008) Cardiac Toxicity of Sunitinib and Sorafenib in Patients With Metastatic Renal Cell Carcinoma. Journal of Clinical Oncology 26, 5204-5212
    50. Hervé Spechbach, P. M., Kuntheavy Ing Lorenzini, Marie Besson, Laurent Gétaz, Henri Sunthorn, and Yves Chalandon. (2013) Reversible ventricular arrythmia induced by dasatinib. Clinical Case Reports, 20–25
    51. Bonacina, F., Barbieri, S. S., Cutuli, L., Amadio, P., Doni, A., Sironi, M., Tartari, S., Mantovani, A., Bottazzi, B., Garlanda, C., Tremoli, E., Catapano, A. L., and Norata, G. D. (2016) Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation. Biochimica Et Biophysica Acta-Molecular Basis of Disease 1862, 1182-1190
    52. Salio, M., Chimenti, S., De Angelis, N., Molla, F., Maina, V., Nebuloni, M., Pasqualini, F., Latini, R., Garlanda, C., and Mantovani, A. (2008) Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation 117, 1055-1064
    53. Rossignol, P., Hernandez, A. F., Solomon, S. D., and Zannad, F. (2019) Heart failure drug treatment. Lancet 393, 1034-1044

    無法下載圖示 校內:2026-09-13公開
    校外:2026-09-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE