| 研究生: |
洪梓豪 Hong, Zi-Hao |
|---|---|
| 論文名稱: |
頻譜分析與碎形理論運用於滾珠螺桿傳動系統之訊號分析及運轉狀況鑑定 Spectrum Analysis and Fractal Theory Applied to the Signal Analysis and Identification of Operating Status of Ball Screw Drive System |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 傅立葉轉換 、頻譜分析 、滾珠螺桿 、碎形理論 、振動 |
| 外文關鍵詞: | FFT, spectra analysis, ball screw, fractal theory, vibration |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究量測垂直式滾珠螺桿系統不同元件部位的振動及扭矩訊號,以傅立葉轉換對訊號進行頻譜分析,對滾珠螺桿各元件部位在機台運轉時產生的特徵頻率進行鑑別。在不同運轉條件的實驗中,馬達振動頻譜會出現齒輪嚙合頻率,軸承振動頻譜會出現不同元件的損傷頻率以及受螺桿振動模態影響的高頻區間,螺帽振動頻譜會出現球通頻率,而扭矩頻譜則會出現轉速頻率與聯軸器嚙合頻率發生幅值調變後的頻率。在長時間耐久試驗中,各元件頻譜並未出現明顯變化。將不同元件部位的振動及扭矩訊號進行碎形分析,可以發現螺帽振動在運轉前10分鐘左右會與螺帽熱應變呈現正相關的趨勢,在長時間耐久試驗中,於實驗第34小時開始發生聯軸器鬆脫的狀況,比較扭矩及軸承振動的碎形分析結果,可以發現在34小時之後,高度尺度參數G值(Topothesy)皆發生明顯變化。本研究主要以頻譜分析鑑別各元件振動的情形,並以碎形分析監測機台運轉的狀況。量測軸承的平面度及粗糙度可以發現,上端軸承的平面度較差,磨耗也較嚴重,推測其原因為上端軸承受到的鎖固力施力不當,使元件間的接觸應力分布不均勻,因而產生較嚴重的磨耗。由上述可知,固定軸承的施力精度以及軸承各元件間的平面精度,皆對軸承的磨耗及使用壽命有顯著的影響。
本研究引用黃淳紹的研究[16]中,斜背式滾珠螺桿系統的實驗數據,並以橫樑結構(Beam structure)作為簡化的模型,計算螺桿振動模態的頻率理論值,將實驗結果與理論值比對,可以發現螺桿的振動模態在高頻的部分對機台各元件有顯著的影響。
This research focuses on measuring the vibration signals and the torque signal from different components of the ball screw system with vertical motion. By using Fast Fourier transform, the spectra of the signals can be obtained and By using the spectra analysis of the signals, the characteristic frequency of different components can be identified when the machine is working. In the experiments of different work conditions, the vibration spectra of motor occur gear meshing frequency, the vibration spectra of bearings occur defect frequency of different components and high frequency range which affected by screw vibration mode, the vibration spectra of nut occurs ball passing frequency, and the torque spectra occur the frequency of amplitude modulation from rotational speed frequency and coupling meshing frequency. In long time experiment, the changes of the spectra of each component are not significant. By using fractal theory to analysis signals, the positive correlation between the vibration of nut and the thermal strain of nut is found, during the first 10 minutes of working. In long time experiment, the coupling of machine occurred to loose after the thirty-fourth hour of the experience. By observing the results of fractal analysis of the torque signal and the vibration signal of bearings, the changes of the topothesy of the torque signal and the vibration signal of bearings are both significant after the thirty-fourth hour of the experience. This research use the spectra analysis to identify the vibrational situation of each components, and use fractal analysis to monitor the working status of machine. By measuring the flatness and the roughness of bearings, the flatness of the upper bearing is found rather poor. The wear of the upper bearing is also serious. The reason is that the upper bearing is under improper force of locking. It cause that the stress on the contact surfaces of components distributes unevenly. From the above, the precision of locking force and the flatness of each components both Significantly impact on the wear of bearings and the working life of bearings.
This research cites the experimental data of ball screw system with horizontal motion from C. S. Huang’s research [16], and use the beam structure to be the simple model. By using the simple model to calculate the theoretical frequencies of the vibration modes of screw and then comparing the theoretical frequencies with the actual frequencies of experimental data, the vibration modes of screw is found Significantly impacting on other components of ball screw system in high frequency separation.
[1] Y. Tokunaga, T. Igarashi, T. Sugiura, “Studies on the Sound and Vibration of a Ball Screw”, Transactions of the Japan Society of Mechanical Engineers, Part C vol.31, No.4, pp.732-738, 1988.
[2] T. Igarashi, Y. Tokunaga, T. Sugiura, “Studies on the sound and vibration of a ball screw”, Transactions of the Japan Society of Mechanical Engineers, Part C, Vol.55, No.520, pp.2945-2950, 1989.
[3] H. Yamaguchi, “Development of NSK S1 Series Ball Screws and Linear Guides”, Motion & Control, NSK Ltd., No.11, pp.27-34, 1996.
[4] 蘇栢賢,“滾珠導螺桿振動噪音之研究”,碩士論文,國立清華大學動力機械工程學系,2005。
[5] 王建文,“滾珠導螺桿低頻噪音源之鑑別與改善研究”,碩士論文,國立清華大學動力機械工程學系,2006。
[6] H. Weule, H. U. Golz, “Preload-control in Ball Screw – A New Approach for Machine Tool Building” , Annals of the CIRP, vol. 40, pp. 383-386, 1991.
[7] 魏進忠,“單螺帽雙圈滾珠螺桿在預負荷及潤滑作用條件下運動機制與機械性能的理論分析及實驗印證”,博士論文,國立成功大學機械工程學系,2003。
[8] J. P. Hung, S. S. Wu, and Y. Chiu, “Impact Failure Analysis of Re-circulating Mechanism in Ball Screw”, Engineering Failure Analysis, vol.11, pp.561-57, 2004.
[9] M. H. Benbouzid, 2000, “A Review of Induction Motors Signature Analysis as a Medium for Faults Detection”, IEEE Transactions On Industrial Electronics, vol. 47, No. 5, pp.984-993.
[10] R. C. Eisenmann, “Machinery Malfunction Diagnosis And Correction”, Prentice Hall, USA, 1998.
[11] 葉俊成,“直流馬達與齒輪箱之噪音分析與減量”,國立台灣科技大學機械工程研究所碩士論文,2005。
[12] H. Yang , J. Mathew and L. Ma, 2005, “Fault Diagnosis of Rolling Element Bearings Using Basis Pursuit”, Mechanical Systems and Signal Processing, vol.19, pp.341-356.
[13] H. M, Monavar, H. Ahmadi and S.S. Mohtasebi, 2008, “Prediction of Defects in Roller Bearings Using Vibration Signal Analysis”, World Applied Sciences Journal, vol.4, No.1, pp.150-154.
[14] R. S. Randy, G. H. Thomas, K. Farrukh, and R. G. Bartheld, “Motor Bearing Damage Detection Using Stator Current Monitoring” IEEE Transactions on Industry Applications, vol. 31, No. 6, November/December, 1995.
[15] 劉家瑋, “馬達動態特性鑑別及故障診斷”,中原大學機械工程學系碩士學位論文,2002。
[16] 黃淳紹, “運用頻譜分析與多重碎形理論於長時間滾珠螺桿系統運轉時訊號分析”,國立成功大學機械工程學系碩士學位論文,2013。
[17] E. N. Lorenz, 1963, “Deterministic Nonperiodic Flow” Journal of the Atmospheric Sciences, vol.20, pp.130-141.
[18] B. B. Mandelbort, 1982, "The Fractal Geometry of Nature," W. H. Freeman, New York.
[19] 葛世榮,朱華,“摩擦學的分形”,機械工業出版社,中國,2005。
[20] G. Zhou, M. Leu and D. Blackmore, “Fractal Geometry Modeling with Applications in Surface Characterisation and Wear Prediction”, International Journal of Machine Tools and Manufacture, vol.35, No.2, pp.203-209, 1995.
[21] H. Zhou, S. Ge, X. Cao and W. Tang, “The Changes of Fractal Dimensions of Frictional Signals in the Running-In Wear Process”, Wear, vol.263, pp.1502–1507, 2007.
[22] 孫毅興,“利用碎形理論建立量測訊號即時監測技術與磨潤行為關聯性之研究”,國立成功大學碩士論文,2010。
[23] 張閔期,“運用多重碎形理論於滾珠螺桿系統之訊號分析”,國立成功大學碩士論文,2011。
[24] C. E. Shannon, “Communication in the Presence of Noise”, Proc. Institute of Radio Engineers, vol.37, no.1, pp.10-21 , 1949.
[25] H. Nyquist, “Certain Topics in Telegraph Transmission Theory”, Trans. AIEE, vol.47, pp.617-644 , 1928.
[26] P. Malliavin, G. Letac, “傅立葉分析及譜分析” ,武漢大學出版社, 1993。
[27] 李天龍,“以FFT為架構建立之諧波參數分析”,國立中山大學碩士論文,1999。
[28] A. Belussi, C. Faloutsos, 1995, “Estimating the Selectivity of Spatial Queries Using the Correlation Fractal Dimension”, in 21th International Journal on Very Large Data Bases, pp.1-26.
[29] B. Dubuc, J. F. Quiniou, C. R.Carmes, C. Tricot and S. W. Zucker, 1989, “Evaluating the Fractal Dimension of Profiles”, Physical Review A, vol.39, pp.1500-1512.
[30] M.V. Berry, and D. H. Berman, 1980, “On the Weierstrass - Mandelbort Fractal Function”, Proceedings of Royal Society of London, A370, pp.459-484.
[31] W. Yan, and K. Komvopoulos, 1998 “Contact Analysis of Elastic-Plastic Fractal Surface, “ Journal of Applied Physics, vo1.84, pp.3617-3624.
[32] TACB系列滾珠螺桿支撐軸承,興中軸承有限公司。
[33] 滾珠螺桿技術手冊,上銀科技股份有限公司,2012。
[34] J. A. Wensing, 1998, “On the dynamics of ball bearings,” FEBO druk BV.
[35] F. P. Bowdon, D. Tabor, 1964, "The Friction and Lubrication of Solids
Part II," Oxford University Press.
[36] Igor A. karnovsky, and Olga I. Lebed, 2004, "Free Vibrations of Beams and Frames," McGraw-Hill.
[37] Lawrence N. Virgin, 2007, “Vibration of Axially-Loaded Structures,” Cambridge.
校內:2023-12-31公開