簡易檢索 / 詳目顯示

研究生: 郭名翔
Kuo, Ming-Hsiang
論文名稱: 透過對向碰撞之電漿噴流產生的電漿盤之研究
Study of the plasma disk generated from the head-on collision of two plasma jets
指導教授: 張博宇
Chang, Po-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 104
中文關鍵詞: 電漿盤錐形導線陣列電漿噴流正向碰撞軸向壓縮脈衝功率系統
外文關鍵詞: Plasma disk, Conical-wire array, Plasma jet, Head-on collision, Z-pinch, Pulsed-power system
相關次數: 點閱:107下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們研究透過正向碰撞的電漿噴流產生的電漿盤,電漿盤可以用來模擬銀河系、恆星形成區和赫比格-哈羅等大尺度且難以研究的天文物理天體。實驗的進行是使用具有量測裝置的 1-kJ 脈衝功率系統。1-kJ 脈衝電源系統由 20 個電容組成,總電容值為 5 µF,電容充電電壓為 20 kV。當系統放電時,產生的脈衝電流峰值約 135 kA ,上升時間約 1592 ns。我們使用此脈衝電流來驅動由一對正面相接的錐形導線陣列所組成的雙錐形導線陣列。雙錐形導線陣列使用 20 µm 的鎢絲架設,與中心軸有 30° 的傾角。 當電流通過鎢絲時,電漿從鎢絲上燒蝕出來,並且透過不均勻的軸向壓縮形成電漿噴流。最後,從正面相接的兩個錐形導線陣列所產生的兩個對向移動的電漿噴流互相碰撞產生電漿盤。為了拍攝影像並獲得電漿噴流與電漿盤的特徵,我們建立了拍攝時間解析的雷射相機系統,以及拍攝時間積分的可見光相機系統,並運用射流速度量測系統獲得電漿噴流的速度。然而,在時間積分與時間解析的影像中,我們觀察到原始的雙錐形導線陣列存在不對稱的問題。因此,我們設計了不同版本的雙錐形導線陣列來解決不對稱的問題。經過多次的測試,運用黃銅圓盤作為頂板、原版的底部線盤和塑料的中層支架作為雙錐形導線陣列,有效的形成了兩個對向的電漿噴流。最後,我們觀察到兩個電漿噴流對撞之後,在雙錐形導線陣列的中間平面上方約0.15 mm 處,產生了長度為 0.68 mm、寬度為 7.15 mm 的電漿盤。

    In the thesis, we were studying the plasma disk generated from two head-on plasma jets colliding with each other. The plasma disk can be used to simulate astrophysical objects such as Milky Way, Star-forming regions, and Herbig-Haro(HH) objects which are large-scale and difficult to study. We used the 1-kJ pulsed-power system with a suite of diagnostics for experiments. The 1-kJ pulsed-power system consists of 20 capacitors with a total capacitance of 5 µF and is charged to 20 kV. When the system discharges, it generates a pulsed current of ∼135 kA with a rise time of ∼1592 ns. The pulsed current is used to drive the bi-conical-wire array consisting of a pair of head-on conical-wire arrays. The tungsten wires with a diameter of 20 µm used in the bi-conical-wire array have a 30° inclination angle with respect to the axis. When the current passes through the tungsten wires, the coronal plasma ablated from the wires and compressed by the nonuniform z-pinch effect to form the plasma jet. Then, two plasma jets generated by the bi-conical-wire array collide with each other and form the plasma disk. In order to capture the image and obtain the characterization of the plasma jet/disk, we built the laser-camera system for taking time-resolved images from the side, the visible-light camera system for taking time-integrated images from the side and the top, and the jet-velocity measurement system for obtaining the speed of plasma jet. However, the original bi-conicalwire array had the asymmetric issue observed in both time-integrated and time-resolved images. Therefore, we designed different versions of bi-conical-wire arrays to solve the problem. After several tests, the brass disk as the top plate, the original bottom wire support as the bottom plate, and plastic middle holders for the bi-conical-wire array are effectively accumulated plasma for forming two head-on plasma jets. Finally, the plasma disk with a height of ∼0.68 mm and a width ∼7.51 mm was generated ∼0.15 mm above the middle plane of the bi-conical-wire array when two plasma jets collided with each other.

    1 Introduction 1 1.1 Astrophysical plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Laboratory astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 The 1-kJ pulsed-power system with diagnostics . . . . . . . . . . . . . . . . . . 3 1.4 Conical-wire arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Bi-conical-wire array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 The goal and the outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 7 2 The pulsed-power system 8 2.1 The 1-kJ pulsed-power system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Optical-table system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 The Fan-Filter Unit (FFU) system . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 The lighting system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 The jet-velocity measurement system . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 The lens-testing experiment . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 The LensHolder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.3 The FiberHolder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.4 The AlignmentStand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.5 Jet-velocity measurement system result . . . . . . . . . . . . . . . . . . . 18 3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Laser-camera system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Visible-light camera system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 The plasma disk 25 4.1 The reverse-conical-wire array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 The bi-conical-wire array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1 The issue of the bi-conical-wire array . . . . . . . . . . . . . . . . . . . . 28 4.2.2 Different versions of bi-conical-wire array . . . . . . . . . . . . . . . . . . 29 4.2.2.1 Version A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2.2 Version B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2.3 Version C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2.4 Version D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2.5 Comparison between different versions of bi-conical-wire arrays 33 4.2.3 Analysis method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.3.1 Image rotating process . . . . . . . . . . . . . . . . . . . . . . 35 4.2.3.2 Characterizing the plasma jet/disk . . . . . . . . . . . . . . . . 37 4.2.4 The plasma disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Future work 42 5.1 Twisted-bi-conical-wire array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6 Summary 47 References 49 A Appendix 51 A.1 The CAD drawing of the LensHolder . . . . . . . . . . . . . . . . . . . . . . . . 51 A.2 The CAD drawing of the HolderSupport . . . . . . . . . . . . . . . . . . . . . . 56 A.3 The CAD drawing of the FiberHolder . . . . . . . . . . . . . . . . . . . . . . . . 61 A.4 The CAD drawing of the AlignmentStand . . . . . . . . . . . . . . . . . . . . . 65 A.5 The CAD drawing of the Top-view camera cage . . . . . . . . . . . . . . . . . . 68 A.6 The procedure of using VNC viewer to operate Raspberry Pi . . . . . . . . . . . 79 A.7 The CAD drawing of the bi-conical-wire array . . . . . . . . . . . . . . . . . . . 84 A.8 The CAD drawing of the Wire Array Alignmnet . . . . . . . . . . . . . . . . . . 92 A.9 The CAD drawing of the Plastic Middle Holder . . . . . . . . . . . . . . . . . . 93 A.10 The CAD drawing of the version C of the bi-conical-wire array . . . . . . . . . . 94 A.11 The CAD drawing of the installing support . . . . . . . . . . . . . . . . . . . . . 96 A.12 The CAD drawing of version D of the bi-conical-wire array . . . . . . . . . . . . 97 A.13 The CAD drawing of the Middle Holder of the case A . . . . . . . . . . . . . . . 100 A.14 The CAD drawing of the twisted-wire-array-alignment . . . . . . . . . . . . . . 101 A.15 The schematic diagram of the laser filter . . . . . . . . . . . . . . . . . . . . . . 102 A.16 The venders of all components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 A.17 Folder of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    [1] NASA ESA and P. Hartigan (Rice University). Stell jets hh 47 hh 34 and hh 2, August 2011.
    [2] NASA JPL. Astronomers find a break in one of milky way spiral arms, August 2021.
    [3] Emerson M. Pugh Garrett Birkhoff, Duncan P. MacDougall and Sir Geoffrey Taylor. Explosives with lined cavities. Journal of Applied Physics 19, 563, 1948.
    [4] J. Kane E. Liang B. A. Remington D. Ryutov, R. P. Drake and W. M. Wood-Vasey. Similarity criteria for the laboratory simulation of supernova hydrodynamics. ApJ 518 821, 1999.
    [5] I.-Lin Yeh. Theoretical study of the solar wind interacting with an unmagnetized planet in space and in laboratory. Master’s thesis, National Cheng Kung University Institute of Space and Plasma Sciences, 2019.
    [6] D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood-Vasey. Similarity criteria for the laboratory simulation of supernova hydrodynamics. The Astrophysical Journal, 518(2):821, 1999.
    [7] Po-Yu Chang etc. One-kilojoule Pulsed-power Generator for Laboratory Space Sciences. Rev. Sci. Instrum., 93, April 2022.
    [8] “lumibird (https://www.quantel-laser.com/home.html),”.
    [9] Yen-Cheng Lin. Studies of rotating plasma jets produced by twisted-conical-wire arrays. Master’s thesis, National Cheng Kung University Institute of Space and Plasma Science, 2021.
    [10] S. N. Bland J. P. Chittenden A. E. Dangor M. G. Haines K. H. Kwek S. A. Pikuz S. V. Lebedev, F. N. Beg and T. A.Shelkovenko. Effect of discrete wires on the implosiondynamics of wire array z pinches. Physics of Plasmas 8, 3734, 2001.
    [11] S. N. Bland S. C. Bott D. J. Ampleford, S. V. Lebedev, V. L. Kantsyrev A. S. Safronova V. V. Ivanov D. A. Fedin P. J. Laca M. F. Yilmaz V. Nalajala I. Shrestha K. Williamson G. Osborne J. P. Chittenden, C. A. Jennings, and A. Ciardi A. Haboub. Dynamics of conical wire array z-pinch implosions. Physics of Plasmas 14, 102704, 2007.
    [12] https://twcn.rsonline.com/web/p/raspberry-pi/1822098/.
    [13] https://twcn.rsonline.com/web/p/raspberry-pi-cameras/2012852.
    [14] https://www.thorlabs.com/thorproduct.cfm?partnumber=fp400urt.
    [15] https://www.thorlabs.com/thorproduct.cfm?partnumber=ft030.
    [16] https://www.thorlabs.com/thorproduct.cfm?partnumber=det10a2.
    [17] Otsu N. A threshold selection method from gray-level histograms. IEE Transactions on Systems, Man and Cybernetics, 9:62–66, January 1979.
    [18] A. Ciardi S. C. Bott G. N. Hall N. Naz C. A. Jennings M. Sheriock J. P. Chittenden J. B. A. Palmer A. Frank D. J. Ampleford, S. V.Lebedev and E. Blackman. Supersonic Radiatively Cooled Rotating Flows and Jets in the Laboratory. Phys Rev Lett, 100:3–25, January 2008.
    [19] D. H. Kalantar and D. A. Hammer. Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense z-pinch experiments. Phys. Rev. Lett. 71, 3806, 1993.
    [20] S. V. Lebedev, J. P. Chittenden, F. N. Beg, S. N. Bland, A. search by orcid Ciardi, D. Ampleford, S. Hughes, M. G. Haines, A. Frank, E. G. search by orcid Blackman, and T. Gardiner. Laboratory astrophysics and collimated stellar outflows: the production of radiatively cooled hypersonic plasma jets. The Astrophysical Journal, Volume 564, Issue 1, pp. 113-119., 2002.
    [21] J. C. Valenzuela, I. V. G. W. Collins, T. Zick, J. Narkis, I. Krasheninnikov, and F. N. Beg. Counter-propagating plasma jet collision and shock formation on a compact current driver. High Energy Density Physics, Volume 17, pp. 140-145, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE