簡易檢索 / 詳目顯示

研究生: 林稚展
Lin, Chih-Jan
論文名稱: 鉛配位化學的研究
Coordination chemistry of lead(II) complexes
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 108
中文關鍵詞: 鉛硫錯合物核磁共振光譜
外文關鍵詞: lead(II), thiolate, Nucleic Magnetic Resonance Spectroscopy
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉛一直以來對於人類與環境都是一種有毒的金屬,在自然界中植物可以產生多硫的解毒劑用來移去鉛,相反的鉛也會與人體中含硫的生物配位基反應而呈現toxic effect。為了要去了解鉛毒性的基礎化學,所以非常需要完整鉛配位化學的光譜。在本論文中,我們使用了一系列的磷硫配位基PS3, PS3’ and PS3” PhPS2’’ and tBuPS2” PhPS1”合成出六個鉛硫錯合物來探討其化學,分別是[N(CH3)3(PhCH2)][Pb(PS3)] (1), [N(C7H15)4] [Pb(PS3’)] (2), [N(C2H5)4][Pb(PS3”)] (3a and 3b), [Pb(PhPS2”)] (4), [Pb(PhPS1”)2] (5),and [Pb(tBuPS2”)] (6),這些錯合物的合成與X-ray結構的鑑定在我們實驗室裡早已建立,為了要去更加了解這些錯合物的配位化學,所以我們使用了一些物理方法來鑑定例如核磁共振光譜、X-ray繞射、X-ray吸收儀器並且探討這些錯合物的固態和液態的配位化學。

    Lead(II) ion has been known to a toxic element for human being and environment. In nature, plants can produce antidotes which contain sulfur ligands to remove lead ion. In contrast, lead(II) ion shows the toxic effect by interacting with sulfur containing bioligands in human body. To provide insights for understanding the fundamental chemistry of the lead(II) toxicity, it is very essential to have a full scope of the lead(II) coordination chemistry. At this particular work, we investigate lead(II) sulfur chemistry by utilizing a series of thiolatophosphine ligands, such as tris(benzenethiolato)phosphine (PS3, PS3’ and PS3”), bis(benzenethiolato)phosphine(PhPS2’’ and tBuPS2”), and benzenethiolatophosphine (PhPS1”). We isolated six lead complexes with these ligands. They are [N(CH3)3(PhCH2)][Pb(PS3)] (1), [N(C7H15)4] [Pb(PS3’)] (2), [N(C2H5)4][Pb(PS3”)] (3a and 3b), [Pb(PhPS2”)] (4), [Pb(PhPS1”)2] (5),and [Pb(tBuPS2”)] (6). The synthesis and X-ray structures have been established previously in our laboratory. To study the coordination chemistry of these complexes in depth, several physical methods such as NMR (1H, 31P, and 207Pb), X-ray absorption spectroscopy in both solid and solution states, were applied on these complexes.

    Abstract I 中文摘要 II 誌謝 III Abbreviations of the ligands IV List of Table VII List of Figure VIII List of Scheme XI Chapter 1 Introduction 1.1 General Introduction 1 1.2 The effect of lead in organism 1 1.3 Stereochemistry of Pb-complexes: Holo-directed and Hemi-directed coordination 5 1.4 Lead(II) thiolate complexes and their 207Pb NMR in literature 6 1.5 Motivation 9 Chapter 2 Experiments 2.1 Materials 11 2.2 Syntheses 12 Synthesis of [N(CH3)3(CH2Ph)][Pb(PS3)](1) 12 Synthesis of [N(C7H15)4][Pb(PS3’)](2) 12 Synthesis of [N(C2H5)4][Pb(PS3”)](3a)(3b) 13 Synthesis of [Pb(PhPS2”)](4) 13 Synthesis of [Pb(PhPS1”)2](5) 13 Synthesis of [Pb(tBuPS2”)](6) 14 X-ray Crystallographic Data Collection 14 Elemental Analysis 14 Nucleic Magnetic Resonance Spectroscopy 14 Mass Spectrometry 15 XAS Data Collection 15 Chapter 3 Results and discussion Synthesis and Characterization of [N(CH3)3(CH2Ph)][Pb(PS3)](1) 16 X-ray Structure 16 Electrospray ionization Mass Spectrum 19 Nuclear Magnetic Resonance Spectroscopic Studies 21 (A)207Pb solid NMR 21 (B) 31P{207Pb J-HMQC 2D solid NMR 21 (C) 207Pb solution-state NMR 23 (D) The comparison of solid-state and solution-state NMR 23 L-edge X-ray absorption spectroscopic studies 24 Synthesis and Characterization of [N(C7H15)4][Pb(PS3’)](2) 26 X-ray Structure 26 Electrospray ionization Mass Spectrum 29 Nucleic Magnetic Resonance Spectroscopy characterization 30 (A)207Pb and solid NMR 30 (B)31P{207Pb} J-HMQC 2D solid NMR 31 (C) 207Pb and 31p solution-state NMR 32 (D) The comparison of solid-state and solution-state NMR 33 Powder X-ray diffraction 34 L-edge X-ray absorption spectroscopic studies 35 Synthesis and Characterization of [N(C2H5)4][Pb(PS3”)](3a)(3b) 37 X-ray Structure 37 Electrospray ionization Mass Spectrum 42 Nucleic Magnetic Resonance Spectroscopy characterization 44 (A) 207Pb and 31P solid NMR 44 (B) 207Pb and 31P solution NMR 44 L-edge X-ray absorption spectroscopic studies 45 Synthesis and Characterization of [Pb(PhPS2”)](4) 47 X-ray Structure 47 Electrospray ionization Mass Spectrum 50 Nuclear Magnetic Resonance Spectroscopic Studies 52 (A)207Pb solid NMR 52 (B)31P{207Pb} J-HMQC 2D solid NMR 52 (C) 207Pb solution NMR 53 (D)The difference of solid and solution NMR 54 L-edge X-ray absorption spectroscopic studies 55 Synthesis and Characterization of [Pb(PhPS1”)2](5) 57 X-ray Structure 57 Electrospray ionization Mass Spectrum 60 Nuclear Magnetic Resonance Spectroscopic Studies 62 (A)207Pb solid NMR 62 (B) 31P{207Pb} J-HMQC 2D solid NMR 62 (C) 207Pb solution NMR 63 (D) The comparison of solid-state and solution-state NMR 64 L-edge X-ray absorption spectroscopic studies 65 Synthesis and Characterization of [Pb(tBuPS2”)](6) 67 X-ray Structure 67 Electrospray ionization Mass Spectrum 70 Nuclear Magnetic Resonance Spectroscopic Studies 71 L-edge X-ray absorption spectroscopic studies 71 Conclusion 73 Reference 75 Appendix A 77 Appendix B 96 Appendix C 102 List of Table Chapter 1 Introduction Table 1-1. Chemical shift of 207Pb NMR for Pb complexes …….……….................7 Chapter 3 Results and discussion Table 2-1. Selected bond lengths (Å) for complex 1................................................17 Table 2-2. Selected bond angles (deg) for complex 1……………………....……...17 Table 2-3. Selected bond lengths (Å) for complex 2................................................27 Table 2-4. Selected bond angles (deg) for complex 2...............................................27 Table 2-5. Selected bond lengths (Å) for complex 3a..............................................38 Table 2-6. Selected bond angles (deg) for complex 3a.............................................38 Table 2-7. Selected bond lengths (Å) for complex 3b..............................................41 Table 2-8. Selected bond angles (deg) for complex 3b……………………….........41 Table 2-9. Selected bond lengths (Å) for complex 4................................................48 Table 2-10. Selected bond angles (deg) for complex 4.............................................48 Table 2-11. Selected bond lengths (Å) for complex 5..............................................58 Table 2-12. Selected bond angles (deg) for complex 5.............................................58 Table 2-13. Selected bond lengths (Å) for complex 6..............................................68 Table 2-14. Selected bond angles (deg) for complex 6.............................................68 Table 3-1. Summaries of the coordinations, bond lengths and chemical shifts of Pb complexes..................................................................................................................74 Table 4-1. CIF check of [N(CH3)3(CH2Ph)][Pb(PS3)](1)……………………….....77 Table 4-2. CIF check of [N(C7H15)4][Pb(PS3’)](2)..................................................80 Table 4-3. CIF check of [N(C2H5)4][Pb(PS3”)](3b).................................................83 Table 4-4. CIF check of [Pb(PhPS2”)](4)..................................................................88 Table 4-5. CIF check of [Pb(PhPS1”)2](5).................................................................91 Table 3-6. CIF check of [Pb(tBuPS2”)](6).................................................................94 List of Figure Chapter 1 Introduction Figure 1-1. Glutathione (γ-L-glutamyl-L-cysteinylglycine, GSH, denoted AH3 in it’s triprotonated form) 2 Figure 1-2. Thiol containing side chain of amino-acid: Cysteine 3 Figure 1-3. Proposed structure for lead(II) Glutathione complexe, Pb(GSH)3 3 Figure 1-4. Ribbon diagram of the fold of the ALAD monomer(left) Formation of E. coli ALAD dimers (right).10 4 Figure 1-5. Organization of the E. coli ALAD octamer.10 4 Figure 1-6. Lead(II) thiolate complexes in literature 8 Figure 1-7. Thiolatophosphineligands used in this research 10 Figure 1-8. Lead-thiolate complex 1~6 10 Chapter 2 Results and discussion [N(CH3)3(PhCH2)][Pb(PS3)] (1) Figure 2-1. ORTEP diagram of complex 1 shown with 35% thermal ellipsoids. H atoms and cations are omitted for clarity. 18 Figure 2-2. Intermolecular interaction of complex 1 viewed alone c with axis 18 Figure 2-3.Packing diagram along with b axis in complex 1 19 Figure 2-4.Negative-Mode ESI-MS spectrum of complex 1 measured in CH2Cl2 20 Figure 2-5. Isotope pattern of complex 1 20 Figure 2-6. 207Pb Solid-state NMR spectrum of complex 1 21 Figure 2-7. 31P Solid-state NMR spectrum of complex 1 22 Figure 2-8. Solid 2D NMR for 31P and 207Pb of complex 1 22 Figure 2-9. Solution 207Pb NMR spectra of complex 1 in CD2Cl2 23 Figure 2-10. The comparison of (A) solid-state and (B) solution-state 207Pb NMR of complex 1 24 Figure 2-11. Pb LIII-edge XANES spectra of complex 1 in solid- and solution-state 25 Figure 2-12. Pb LIII-edge EXAFS spectra of complex 1 in solid- and solution-state 25 [N(C7H15)4] [Pb(PS3’)] (2) Figure 2-13. ORTEP diagram of complex 2 shown with 35% thermal ellipsoids. H atoms and cations are omitted for clarity 27 Figure 2-14. No intermolecular interaction of complex 2 viewed alone with c axis 28 Figure 2-15.Packing diagram along with b axis in complex 2 28 Figure 2-16.Negative-Mode ESI-MS spectrum of complex 2 measured in CH2Cl2 29 Figure 2-17. Isotope pattern of complex 2 (A) experimental pattern and (B) theoretic pattern. 30 Figure 2-18. 207Pb Solid-state NMR spectrum of complex 2 31 Figure 2-19. 31P Solid-state NMR spectrum of complex 2 31 Figure 2-20. Solid 2D NMR for 31P and 207Pb of complex 2 32 Figure 2-21. Solution 31P NMR spectra of complex 2 in d-DMSO………………..33 Figure 2-22. Solution 207Pb NMR spectra of complex 2 in CD2Cl2 33 Figure 2-23. The comparison of (A) solid-state and (B) solution-state 207Pb NMR of complex 2 34 Figure 2-24. Powder XRD pattern of complex 2 (A) theoretic pattern and (B) experimental pattern. 35 Figure 2-25. Pb LIII-edge XANES spectra of complex 2 in solid- and solution-state…………………………………………………………………….... 36 Figure 2-26. Pb LIII-edge EXAFS spectra of complex 2 in solid- and solution-state……………………………………………………………………… 36 [N(C2H5)4][Pb(PS3”)] (3a and 3b) Figure 2-27. ORTEP diagram of complex 3a shown with 35% thermal ellipsoids. H atoms and cations are omitted for clarity. 39 Figure 2-28. Intermolecular interaction of complex 3a viewed alone c with axis 39 Figure 2-29. Packing diagram along with a axis in complex 3a 40 Figure.2-30. ORTEP diagram of complex 3b shown with 35% thermal ellipsoids. H atoms and cations are omitted for clarity 41 Figure 2-31. Packing diagram along with b axis in complex 3b 42 Figure 2-32. Negative-Mode ESI-MS spectrum of complex 3 measured in CH2Cl .43 Figure 2-33. Isotope pattern of complex 3 (A) experimental pattern and (B) theoretic pattern. 43 Figure 2-34. 31P Solid-state NMR spectrum of complex 3 44 Figure 2-35. 207Pb Solution-state NMR spectrum of complex 3…………………...45 Figure 2-36. 31P Solution-state NMR spectrum of complex 3 45 Figure 2-37. Pb LIII-edge XANES spectra of complex 3 in solid- and solution-state 46 Figure 2-38. Pb LIII-edge EXAFS spectra of complex 3 in solid- and solution-state ……....................................................................................................46 [Pb(PhPS2”)] (4) Figure 2-39. ORTEP diagram of complex 4 shown with 35% thermal ellipsoids. H atoms are omitted for clarity 48 Figure 2-40. Intermolecular interactions of complex 4 viewed alone a with axis 49 Figure 2-41. Packing diagram along with c axis in complex 4 49 Figure 2-42. Positive-Mode ESI-MS spectrum of complex 2 measured in CH2Cl2 50 Figure 2-43. Isotope pattern of complex 4 (A) experimental pattern and (B) theoretic pattern. 51 Figure 2-44. Isotope pattern of complex 4 (A) experimental pattern and (B) theoretic pattern. 51 Figure 2-45. 207Pb Solid-state NMR spectrum of complex 4 52 Figure 2-46. 31P Solid-state NMR spectrum of complex 4 53 Figure 2-47. Solid 2D NMR for 31P and 207Pb of complex 4 53 Figure 2-48. Solution 207Pb NMR spectra of complex 4 in CD2Cl2 54 Figure 2-49. The comparison of (A) solid-state and (B) solution-state 207Pb NMR of complex 4 55 Figure 2-50. Pb LIII-edge XANES spectra of complex 4 in solid- and solution-state 56 Figure 2-51. Pb LIII-edge EXAFS spectra of complex 4 in solid- and solution-state 56 [Pb(PhPS1”)2](5) Figure.2-52. ORTEP diagram of complex 5 shown with 35% thermal ellipsoids. H atoms and are omitted for clarity 58 Figure 2-53. Intermolecular interactions of complex 5 viewed alone b with axis 59 Figure 2-54. Packing diagram along with b axis in complex 5 59 Figure 2-55.Negative-Mode ESI-MS spectrum of complex 5 measured in CH2Cl2. 60 Figure 2-56. Isotope pattern of complex 5 (A) experimental pattern and (B) theoretic pattern. 61 Figure 2-57. Isotope pattern of complex 5 (A) experimental pattern and (B) theoretic pattern. 61 Figure 2-58. 207Pb Solid-state NMR spectrum of complex 5 62 Figure 2-59. 31P Solid-state NMR spectrum of complex 5 63 Figure 2-60. Solid 2D NMR for 31P and 207Pb of complex 5 63 Figure 2-61. Solution 207Pb NMR spectra of complex 5 in CD2Cl2 64 Figure 2-62. The comparison of (A) solid-state and (B) solution-state 207Pb NMR of complex 5 65 Figure 2-63. Pb LIII-edge XANES spectra of complex 5 in solid- and solution-state 66 Figure 2-64. Pb LIII-edge EXAFS spectra of complex 5 in solid- and solution-state 66 [Pb(tBuPS2”)] (6) Figure 2-65. ORTEP diagram of complex 6 shown with 35% thermal ellipsoids. H atoms are omitted for clarity. 68 Figure 2-66. Intermolecular interactions of complex 6 viewed alone b with axis 69 Figure 2-67. Packing diagram along with b axis in complex 6Figure 1.3 ORTEP diagram of complex 6 shown with 35% thermal ellipsoids. H atoms are omitted for clarity. 69 Figure 2-68.Negative-Mode ESI-MS spectrum of complex 6 measured in CH2Cl2 70 Figure 2-69. Isotope pattern of complex 6 (A) experimental pattern and (B) theoretic pattern.. 71 Figure 2-70. Pb LIII-edge XANES spectra at RT of solid and solution for complex 6 72 Figure 2-71. Pb LIII-edge EXAFS spectra of solid and solution for complex 6 at RT 72 Figure 3-1. 1H NMR Spectrum of [N(CH3)3(PhCH2)][Pb(PS3)] (1)........................97 Figure 3-2. 1H NMR Spectrum of [N(C7H15)4] [Pb(PS3’)] (2).................................98 Figure 3-3. 1H NMR Spectrum of [N(C2H5)4][Pb(PS3”)] (3a and 3b).....................99 Figure 3-4. 1H NMR Spectrum of [Pb(PhPS2”)] (4)................................................100 Figure 3-5. 1H NMR Spectrum of [Pb(PhPS1”)2] (5)...............................................101 Figure 3-6. 1H NMR Spectrum of [Pb(tBuPS2”)] (6)...............................................102 Figure 3-7. 31P NMR Spectrum of [N(CH3)3(PhCH2)][Pb(PS3)] (1)......................103 Figure 3-8. 31P NMR Spectrum of [N(C7H15)4] [Pb(PS3’)] (2)...............................104 Figure 3-9. 31P NMR Spectrum of [N(C2H5)4][Pb(PS3”)] (3a and 3b)...................105 Figure 3-10. 31P NMR Spectrum of [Pb(PhPS2”)] (4).............................................106 Figure 3-11. 31P NMR Spectrum of [Pb(PhPS1”)2] (5)............................................107 Figure 3-12. 31P NMR Spectrum of [Pb(tBuPS2”)] (6)............................................108 List of Scheme Chapter 1 Introduction Scheme 1-1. Detoxification mechanisms process…………………………………...2 Scheme 1-2. (A) Holo-directed and (B) Hemi-directed Coordination sphere………5 Scheme 1-3. Lead(II)-ligand interaction in the hemi-directed and holo-directed geometries...................................................................................................................5 Chapter 2 Results and discussion Scheme 2-1. Teh reaction scheme of complex 1……………………………….…..16 Scheme 2-2. Teh reaction scheme of complex 2…………………………………...26 Scheme 2-3. Teh reaction scheme of complex 3 ……………………………….….36 Scheme 2-4. Teh reaction scheme of complex 4……………………………….…..46 Scheme 2-5. Teh reaction scheme of complex 5 ……………………………….….56 Scheme 2-6. Teh reaction scheme of complex 6…………………………………...66

    1 Dybowski, C. & Neue, G. Solid state Pb-207 NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 41, 153-170, (2002).
    2 Briand, G. G., Smith, A. D., Schatte, G., Rossini, A. J. & Schurko, R. W. Probing lead(II) bonding environments in 4-substituted pyridine adducts of (2,6-Me2C6H3S)2Pb: an X-ray structural and solid-state 207Pb NMR study. Inorganic chemistry 46, 8625-8637, (2007).
    3 Sharma, P. & Dubey, R. S. Lead toxicity in plants. Brazilian Journal of Plant Physiology 17, 35-52, (2005).
    4 Cherian, S. & Oliveira, M. M. Transgenic Plants in Phytoremediation: Recent Advances and New Possibilities. Environmental Science & Technology 39, 9377-9390, (2005).
    5 Lasat, M. M. The use of plants for the removal of toxic metals from contaminated soils. (US Environmental Protection Agency, 2000).
    6 Mah, V. & Jalilehvand, F. Lead(II) complex formation with glutathione. Inorganic chemistry 51, 6285-6298, (2012).
    7 Neupane, K. P. & Pecoraro, V. L. Pb-207 NMR spectroscopy reveals that Pb(II) coordinates with glutathione (GSH) and tris cysteine zinc finger proteins in a PbS3 coordination environment. Journal of inorganic biochemistry 105, 1030-1034, 2011.04.010 (2011).
    8 Sneller, F. E. C. et al. Derivatization of Phytochelatins fromSilenevulgaris, Induced upon Exposure to Arsenate and Cadmium: Comparison of Derivatization with Ellman's Reagent and Monobromobimane. Journal of Agricultural and Food Chemistry 48, 4014-4019, (2000).
    9 Mishra, S. et al. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65, 1027-1039, 2006.03.033 (2006).
    10 Erskine, P. T. et al. X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 A resolution. Biochemistry 38, 4266-4276, (1999).
    11 Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. Lone Pair Functionality in Divalent Lead Compounds. Inorganic chemistry 37, 1853-1867, (1998).
    12 Magyar, J. S. et al. Reexamination of lead(II) coordination preferences in sulfur-rich sites: implications for a critical mechanism of lead poisoning. Journal of the American Chemical Society 127, 9495-9505, (2005).
    13 Chen, P. R. et al. Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. Journal of the American Chemical Society 129, 12350-12351, (2007).
    14 Rekken, B. D., Brown, T. M., Olmstead, M. M., Fettinger, J. C. & Power, P. P. Stable plumbylene dichalcogenolate monomers with large differences in their interligand angles and the synthesis and characterization of a monothiolato Pb(II) bromide and lithium trithiolato plumbate. Inorganic chemistry 52, 3054-3062, (2013).
    15 Dean, P. A., Vittal, J. J. & Payne, N. C. Discrete trigonal-pyramidal lead (II) complexes: syntheses and x-ray structure analyses of [(C6H5) 4As][Pb (EC6H5) 3](E= S, Se). Inorganic chemistry 23, 4232-4236 (1984).
    16 Yu-chiau, W. Syntheses, Structures, and Characterizations of Lead(II) Complexes in A Sulfur-rich Ligated Environment. (2008).
    17 Siegel, R., Nakashima, T. T. & Wasylishen, R. E. Application of Multiple-Pulse Experiments to Characterize Broad NMR Chemical-Shift Powder Patterns from Spin-1/2Nuclei in the Solid State. The Journal of Physical Chemistry B 108, 2218-2226, (2004).

    下載圖示 校內:2016-07-19公開
    校外:2016-07-19公開
    QR CODE