簡易檢索 / 詳目顯示

研究生: 陳佳妏
Chen, Chia-Wen
論文名稱: 極值分配中參數估計之研究
The Study of Parameter Estimation in Extreme Value Distributions
指導教授: 路繼先
Lu, Chi-Hsien Joseph
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 77
中文關鍵詞: 起始值門檻值的決定最大概似估計量
外文關鍵詞: Initial value, Maximum Likelihood Estimation, Threshold Detemination
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在廣義極值分配最大概似估計量的估計中, 由於起始值的決定並非容易, 於是我們針對目前現有的方法進行探討, 提供一套合理且可行的方法, 建立最大概似估計值搜尋的起始值.
      在廣義柏拉圖分配關於門檻值決定的部分, 我們以簡單的方法建立門檻值搜尋的區間.且我們將整個決定門檻值的過程程式化, 自動化.另外我們建立一套明清楚的法則以共最大概似估計量的搜尋.

      In the maximum likelihood estimation of the parameters of generalized extreme distribution, the selecting initial values is not a trial task, we study the current available approach and propose an alternative way to establish a reasonable and feasible initial values. As for the determination of the threshold in the generalized Pareto distribution, we propose a simple way to set up the nterval for searching threshold, along with programing the procedure of determining an appropriate threshold and providing a clear-out rule for determining threshold value.

    Contents 1 Introduction 7 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Extreme Value Models 9 2.1 Block maxima model . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Threshold Excess Model . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Max Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Relationship Between GEV and GPD . . . . . . . . . . . . . . . . . . 15 2.5 N-Year Return Level . . . . . . . . . . . . . . . . . . . . . . . . .16 2.5.1 Generalized Extreme Value Distribution . . . . . . . . . . . . . ..17 2.5.2 Generalized Pareto Distribution . . . . . . . . . . . . . . . . . .18 3 Estimation of Generalized Extreme Value Distribution 20 3.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 ML Estimates for Generalized Extreme Value Distribution . . . . . . .21 3.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Searching ML Estimates for Generalized Extreme Value Distribution 23 3.4.1 What Happened to The 10th Dataset . . . . . . . . . . . . . . . . .25 3.4.2 Solve The Problem . . . . . . . . . . . . . . . . . . . . . . . . .26 3.4.3 Further Examine The Change . . . . . . . . . . . . . . . . . . . . 29 3.5 Possible Modication . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Estimation of the Generalized Pareto Distribution 34 4.1 Graphical Approach for the Choice of Threshold . . . . . . . . . . . 35 4.1.1 Mean Residual Life Plot . . . . . . . . . . . . . . . . . . . . . .35 4.1.2 Stability Plot . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Goodness-of-t Tests Approach . . . . . . . . . . . . . . . . . . . .39 4.2.1 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 Goodness-of-t Tests . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Comment on The Current Approach . . . . . . . . . . . . . . . . . . .41 4.4 Modication and Improvement . . . . . . . . . . . . . . . . . . . . .43 4.4.1 Searching for Maximum Likelihood Estimates . . . . . . . . . .. . .44 4.4.2 Improvement for Calculational Convenience . . . . . . . . . . . . .45 4.4.3 The Modication of Rules for Search . . . . . . . . . . . . . . . .47 4.5 Revisit of Wheaton River data . . . . . . . . . . . . . . . . . . . .49 5 Further Result 54 5.1 Revisit the Simulated Datasets . . . . . . . . . . . . . . . . . . . 54 5.1.1 Initial Value Interval . . . . . . . . . . . . . . . . . . . . . . 54 5.1.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Examine Return Level . . . . . . . . . . . . . . . . . . . . . . . . 56 References 63 Appendix ML Estimates for GEV 65 Appendix ML Estimates for GPD 69 Appendix R functions 73

    Choulakian, M. A., and Stephens, V. (2001), "Goodness-of- t tests for the gener-
    alized pareto distribution." Technometrics., 43, 478-485.
    Coles, S. C. (2001), An Introduction to Statistical Modeling of Extreme Value., London:
    Springer-Verlag.
    Davison, A. C. (1984), "Modeling excesses over high thresholds, with an
    application." Statistical Extremes and Applications, ed. J. Tiago de Oliveira, Dordrecht:
    D.Reidel, pp. 461-482.
    Davison, A. C., and Smith, R. L. (1990), "Models for exceedances over high thresholds (with discussion)." Journal of the Royal Statistical Society, 52, 393-442.
    Fisher, R. A., and Tippett, L. H. C. (1928), "On the estimation of the frequency
    distributions of the largest or smallest member of a sample." Proceedings of
    The Cambridge Philosophical Society, 24, 180-190.
    Grimshaw, S. D. (1993), "Comuting maximum likelihood estimates for the gener-
    alized pareto distribution." Technometrics, 35, 185-191.
    Hocking, J. R. M., Wallis, J. R., and Wood, E. F. (1985), "Estimation of the generalixed extreme value distribution by the method of probability-weighted mo-
    ments." Technometrics, 27, 251-261.
    Pickand, J. (1975), "Statistical inference using extreme order statistics." Annals of Statistics, 3, 119-131.
    Reiss, R. D., and Thomas, M. (2001), Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields., Birkhauser Verlag
    AG, 2nd edition.
    Smith, R. L. (1985), "Maximum likelihood estimation in a class of nonregular
    cases." Biometrika, 72, 67-90.
    - (2003), "Statistics of extemes with applications in environment,
    insurance and finance." Department of Statistics University of North Carolina Chapel Hill, NC 27599-3260, USA.

    下載圖示 校內:立即公開
    校外:2004-07-05公開
    QR CODE