簡易檢索 / 詳目顯示

研究生: 張文吉
Chang, Wen-Chi
論文名稱: 兼具近紅外光上轉換螢光顯影與光熱治療功能之NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料的製備
Fabrication of NaYF4:Yb, Er/ reduced graphene oxide nanocomposite with NIR upconversion fluorescence imaging and photothermal therapy
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 還原氧化石墨烯光熱治療上轉換NaYF4:YbEr螢光顯影奈米複合材料
外文關鍵詞: reduced graphene oxide, photothermal therapy, upconversion, NaYF4:Yb, Er, fluorescence imaging, nanocomposite
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先以改良式漢默法(modified Hummers method)製備氧化石墨,並利用左旋精胺酸以微波法同時進行還原與表面修飾,藉此獲得分散性佳的還原氧化石墨烯。其次,合成具有近紅外光上轉換螢光顯影特性之NaYF4:Yb,Er奈米粒子,並於表面包覆二氧化矽奈米殼層,再以(3-三乙氧基矽丙基)丁二酸酐修飾於二氧化矽奈米殼層表面使其羧基化,最後共價鍵結於表面修飾左旋精胺酸的還原氧化石墨烯表面,形成兼具近紅外上轉換螢光顯影與光熱治療功能之奈米複合材料。透過穿透式電子顯微鏡(TEM)、原子力顯微鏡(AFM)、X光繞射分析儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR)、拉曼光譜儀(Raman)、化學分析電子光譜儀(ESCA)、紫外光/可見光/近紅外光光譜儀UV/VIS/NIR)與螢光光譜儀分析產物之粒子形態、粒徑、晶體結構及光學等特性,可證實本研究已成功製備出還原氧化石墨烯、NaYF4:Yb,Er奈米粒子及其奈米複合材料。此外,藉由人類子宮頸癌細胞的硏究,可確認本研究所製得之奈米複合材料確實兼具有近紅外光光熱治療和螢光顯影的功能。

    In this thesis, graphite oxide was synthesized by modified Hummers method and then reduced and surface modified with L-arginine via the microwave method to yield the well-dispersed reduced graphene oxide at first. Secondly, the NaYF4:Yb, Er nanoparticles with near infrared (NIR) upconversion fluorescence imaging property were synthesized, surface coated with silica nanoshells, and then further modified with 3-(triethoxysilyl)propylsuccinic anhydride to generate carboxylic groups on the surface of silica nanoshells. Finally, they were covalently bound on the arginine-modified reduced graphene oxide to form the nanocomposite combining the functions of NIR upconversion fluorescence imaging and photothermal therapy. By transmission electron microscopy (TEM), atomic force microscope (AFM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), Raman spectra, electron spectroscopy for chemical analysis (ESCA), UV/VIS/NIR spectrophometer, and fluorescence spectrophotometer, the products’ morphologies, sizes, crystalline structures, and optical properties were characterized. It was found that the formation of reduced graphene oxide, NaYF4:Yb,Er nanoparticles, and their nanocomposite has been achieved successfully. In addition, by using a HeLa cancer cell line, it was demonstrated this nanocomposite indeed possessed both the functions of NIR photothermal therapy and fluorescence imaging.

    中文摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 石墨烯 1 1.1.1 石墨烯之性質 1 1.1.2 氧化石墨烯之還原 6 1.1.3 石墨烯於近紅外光下之光熱治療應用 9 1.2 近紅外光上轉換材料 11 1.2.1 簡介 11 1.2.2 NaYF4:Yb, Er奈米粒子 13 1.3 研究動機與內容 28 第二章 基礎理論 29 2.1 光熱治療概述 29 2.2 上轉換原理 31 2.2.1 概述 31 2.2.2 NaYF4:Yb, Er奈米粒子之上轉換原理 33 2.2.3 表面二氧化矽包覆 35 2.2.4 二氧化矽之表面改質 39 第三章 實驗方法 40 3.1 實驗藥品、儀器及材料 40 3.1.1 實驗藥品 40 3.1.2 實驗儀器 43 3.2 製備方法 45 3.2.1 還原氧化石墨烯之製備 45 3.2.2 NaYF4:Yb, Er奈米粒子之製備與表面改質 48 3.2.3 NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料之製備 53 3.3 性質測定與分析 55 第四章 結果與討論 58 4.1 還原氧化石墨烯之材料性質 58 4.2 NaYF4:Yb, Er/二氧化矽/複合奈米粒子之材料性質 69 4.3 NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料 77 4.3.1 NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料之材料性質 77 4.3.2 NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料光熱效應之研究 85 4.3.3 NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料生物顯影功能之研究 88 第五章 結論 92 參考文獻 95

    [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
    [2] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388.
    [3] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183 - 191.
    [4] 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 33 (2011) 163-167.
    [5] W.S.H. Jr., R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80 (1958) 1339.
    [6] 劉偉仁, 郭信良, 下世代能源材料 - 石墨烯, 物理雙月刊, 33 (2011) 178-182.
    [7] A.M. Jastrzebska, P. Kurtycz, A.R. Olszyna, Recent advances in graphene family materials toxicity investigations, J. Nanopart. Res., 14 (2012) 1320.
    [8] J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue, D. Vinh, H. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy, J. Am. Chem. Soc., 133 (2011) 6825-6831.
    [9] X. Xi, L. Ming, A voltammetric sensor based on electrochemically reduced graphene modified electrode for sensitive determination of midecamycin, Anal. Methods, 4 (2012) 3013.
    [10] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon, 50 (2011) 3210-3228.
    [11] H. Du, J. Ye, J. Zhang, X. Huang, C. Yu, Graphene Nanosheets Modified Glassy Carbon Electrode as a Highly Sensitive and Selective Voltammetric Sensor for Rutin, Electroanal., 22 (2010) 2399-2406.
    [12] Y. Si, E.T. Samulski, Synthesis of Water Soluble Graphene, Nano Lett., 8 (2008) 1679-1682.
    [13] M. Poliakoff, J.M. Fitzpatrick, T.R. Farren, P.T. Anastas, Green Chemistry Science and Politics of Change, Science, 297 (2002) 807-810.
    [14] S. Link, Z.L. Wang, M.A. El-Sayed, Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition, J. Phys. Chem. B, 103 (1999) 3529-3533.
    [15] P. Raveendran, J. Fu, S.L. Wallen, A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles, Green Chem., 8 (2006) 34.
    [16] M.N. Nadagouda, R.S. Varma, Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods, Green Chem., 8 (2006) 516.
    [17] Q.F. Zhou, J.C. Bao, Z. Xu, Shape-controlled synthesis of nanostructured gold by a protection–reduction technique, J. Mater. Chem., 12 (2002) 384-387.
    [18] S.K. Bhargava, J.M. Booth, S. Agrawal, P. Coloe, G. Kar, Gold Nanoparticle Formation during Bromoaurate, Langmuir, 21 (2005) 5949-5956.
    [19] Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, 48 (2010) 2118-2122.
    [20] Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment, Adv. Mater., 24 (2012) 1418-1423.
    [21] H.C. Huang, S. Barua, D.B. Kay, K. Rege, Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes, ACS Nano, 3 (2009) 2941-2952.
    [22] X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128 (2006) 2115-2120.
    [23] W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu, Y. Chen, W. Zhao, X. Liu, C. Liu, J. Shi, Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy, Adv. Mater., 23 (2011) 5392-5397.
    [24] L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, PNAS, 100 (2003) 13549-13554.
    [25] J.W. Fisher, S. Sarkar, C.F. Buchanan, C.S. Szot, J. Whitney, H.C. Hatcher, S.V. Torti, C.G. Rylander, M.N. Rylander, Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation, Cancer Res., 70 (2010) 9855-9864.
    [26] X. Liu, H. Tao, K. Yang, S. Zhang, S.T. Lee, Z. Liu, Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors, Biomater., 32 (2011) 144-151.
    [27] Z.M. Markovic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepic, K.M. Arsikin, S.P. Jovanovic, A.C. Pantovic, M.D. Dramicanin, V.S. Trajkovic, In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes, Biomater., 32 (2011) 1121-1129.
    [28] F. Zhou, S. Wu, S. Song, W.R. Chen, D.E. Resasco, D. Xing, Antitumor immunologically modified carbon nanotubes for photothermal therapy, Biomater., 33 (2012) 3235-3242.
    [29] B.H. Lai, D.H. Chen, LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells, Acta Biomatr., 9 (2013) 7556-7563.
    [30] T.N. Lambert, N.L. Andrews, H. Gerung, T.J. Boyle, J.M. Oliver, B.S. Wilson, S.M. Han, Water-soluble germanium(0) nanocrystals: cell recognition and near-infrared photothermal conversion properties, Small, 3 (2007) 691-699.
    [31] W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide, Biomater., 32 (2011) 8555-8561.
    [32] Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Graphene: a versatile nanoplatform for biomedical applications, Nanoscale, 4 (2012) 3833-3842.
    [33] M. Li, X. Yang, J. Ren, K. Qu, X. Qu, Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease, Adv. Mater., 24 (2012) 1722-1728.
    [34] M.C. Wu, A.R. Deokar, J.H. Liao, P.Y. Shih, Y.C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria, ACS Nano, 7 (2013) 1281-1290.
    [35] O. Akhavan, E. Ghaderi, Graphene Nanomesh Promises Extremely Efficient In Vivo Photothermal Therapy, Small, (2013).
    [36] K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett., 10 (2010) 3318-3323.
    [37] K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power, Biomater., 33 (2012) 2206-2214.
    [38] K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles, Adv. Mater., 24 (2012) 1868-1872.
    [39] M.C. Duch, G.R. Budinger, Y.T. Liang, S. Soberanes, D. Urich, S.E. Chiarella, L.A. Campochiaro, A. Gonzalez, N.S. Chandel, M.C. Hersam, G.M. Mutlu, Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung, Nano Lett., 11 (2011) 5201-5207.
    [40] O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy, J. Mater.Chem., 22 (2012) 13773.
    [41] O. Akhavan, E. Ghaderi, H. Emamy, Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy, J. Mater.Chem., 22 (2012) 20626.
    [42] X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy, Biomater., 34 (2013) 4786-4793.
    [43] A. Sahu, W.I. Choi, J.H. Lee, G. Tae, Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy, Biomater., 34 (2013) 6239-6248.
    [44] Z. Sheng, L. Song, J. Zheng, D. Hu, M. He, M. Zheng, G. Gao, P. Gong, P. Zhang, Y. Ma, L. Cai, Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy, Biomater., 34 (2013) 5236-5243.
    [45] X.C. Qin, Z.Y. Guo, Z.M. Liu, W. Zhang, M.M. Wan, B.W. Yang, Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy, J. Photochem. Photobiol. B-Biol., 120 (2013) 156-162.
    [46] X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, Z. Liu, A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging, Nano Res., 5 (2012) 199-212.
    [47] Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma, J. Am. Chem. Soc., 135 (2013) 4799-4804.
    [48] J. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 7 (2003) 626-634.
    [49] M. Oheim, D.J. Michael, M. Geisbauer, D. Madsen, R.H. Chow, Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches, Adv. Drug Deliv. Rev.,, 58 (2006) 788-808.
    [50] J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krämer, C. Reinhard, H.U. Güdel, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion, Opt. Mater., 27 (2005) 1111-1130.
    [51] J. Shan, Rare Earth Doped Upconverting Nanophosphors (UCNPs) for Bio-imaging, Energy and Security Applications in, 4th Annual Innovation Forum, 2009.
    [52] J.F. Suyver, J. Grimm, K.W. Krämer, H.U. Güdel, Highly efficient near-infrared to visible up-conversion process in, J. Lumin., 114 (2005) 53-59.
    [53] J. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, H. Güdel, Anomalous power dependence of sensitized upconversion luminescence, Phys. Rev. B, 71 (2005).
    [54] A. Aebischer, M. Hostettler, J. Hauser, K. Kramer, T. Weber, H.U. Gudel, H.B. Burgi, Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides, Angew. Chem. Int. Ed. Engl., 45 (2006) 2802-2806.
    [55] K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors, Chem. Mater., 16 (2004) 1244-1251.
    [56] G.S. Yi, G.M. Chow, Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence, Adv. Funct. Mater., 16 (2006) 2324-2329.
    [57] F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature, 463 (2010) 1061-1065.
    [58] N. Martin, P. Boutinaud, R. Mahiou, J.-C. Cousseins, M. Bouderbala, Preparation of fluorides at 80 °C in the NaF-(Y, Yb, Pr)F3 system, J. Mater.Chem., 9 (1999) 125-128.
    [59] J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Towards upconversion for amorphous silicon solar cells, Sol. Energy Mater. Sol. Cells, 94 (2010) 1919-1922.
    [60] J.H. Zeng, J. Su, Z.H. Li, R.X. Yan, Y.D. Li, Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb, Er3+ Phosphors of Controlled Size and Morphology, Adv. Mater., 17 (2005) 2119-2123.
    [61] N. Menyuk, NaYF4 : Yb,Er—an efficient upconversion phosphor, Appl. Phys. Lett., 21 (1972) 159.
    [62] H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan, Size- and Phase-Controlled Synthesis of Monodisperse NaYF4:Yb,Er Nanocrystals from a Unique Delayed Nucleation Pathway Monitored with Upconversion Spectroscopy, J.Phys. Chem. C, 111 (2007) 13730-13739.
    [63] Z. Li, Y. Zhang, S. Jiang, Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles, Adv. Mater., 20 (2008) 4765-4769.
    [64] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis, Nature, 437 (2005) 121-124.
    [65] L. Wang, Y. Li, Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4Nanocrystals, Chem. Mater., 19 (2007) 727-734.
    [66] H.-P. Zhou, C.-H. Xu, W. Sun, C.-H. Yan, Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications, Adv. Funct. Mater., 19 (2009) 3892-3900.
    [67] M. Wang, C.C. Mi, W.X. Wang, C.H. Liu, Y.F. Wu, Z.R. Xu, C.B. Mao, S.K. Xu, Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles, ACS Nano, 3 (2009) 1580-1586.
    [68] J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J.S. Friedberg, Y. Ju, Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF[sub 4] upconversion nanophosphors, J. Appl. Phys., 104 (2008) 094308.
    [69] Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, C. Huang, Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels, J. Am. Chem. Soc., 130 (2008) 3023-3029.
    [70] C. Wang, L. Cheng, Z. Liu, Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy, Biomater., 32 (2011) 1110-1120.
    [71] P. Zhang, W. Steelant, M. Kumar, M. Scholfield, Versatile photosensitizers for photodynamic therapy at infrared excitation, J. Am. Chem. Soc., 129 (2007) 4526-4527.
    [72] J.M. Meruga, W.M. Cross, P. Stanley May, Q. Luu, G.A. Crawford, J.J. Kellar, Security printing of covert quick response codes using upconverting nanoparticle inks, Nanotechnology, 23 (2012) 395201.
    [73] J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Upconverter solar cells: materials and applications, Energy Environ. Sci., 4 (2011) 4835.
    [74] J. Shen, L.D. Sun, Y.W. Zhang, C.H. Yan, Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy, Chem. Commun., 46 (2010) 5731-5733.
    [75] S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, J. Lin, Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core-Shell-Structured Nanocomposites as Drug Carriers, Adv. Funct. Mater., 20 (2010) 1166-1172.
    [76] C. Yan, A. Dadvand, F. Rosei, D.F. Perepichka, Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er nanoheterostructures, J. Am. Chem. Soc., 132 (2010) 8868-8869.
    [77] J.C. Boyer, C.J. Carling, B.D. Gates, N.R. Branda, Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity, J. Am. Chem. Soc., 132 (2010) 15766-15772.
    [78] L. Ren, X. Qi, Y. Liu, Z. Huang, X. Wei, J. Li, L. Yang, J. Zhong, Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material, J. Mater. Chem., 22 (2012) 11765.
    [79] T. He, W. Wei, L. Ma, R. Chen, S. Wu, H. Zhang, Y. Yang, J. Ma, L. Huang, G.G. Gurzadyan, H. Sun, Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF(4) :Yb(3)(+)/Er(3)(+) nanoparticles, Small, 8 (2012) 2163-2168.
    [80] 陳振臺, 利用連續式波長近紅外光雷射探討以金為主的奈米材料在三種癌細胞的光熱治療效果:金奈米棒、金銀奈米空球、二氧化矽-金奈米球, 國立成功大學化學工程學系碩士論文, (2008).
    [81] B.S.R. A.Shalav , T. Trupkel, R.P. Corkish , K.W. Kramer, H.U. Gudel, M.A. Green, The application of up-converting phosphors for increased solar cell conversion efficiencies, 3rd World Conference on Phorovoltoic Energy Conversion, 1 (2003) 248-250.
    [82] 高濂, 孫靜, 劉楊橋, 奈米粉體的分散及表面改性, 五南, 台北, 2005.
    [83] K. Martinek, I.V. Berezin, Y.L. Khmelnitski, N.L. Klyachko, A.V. Levashov, Micellar enzymology: Potentialities in applied areas (biotechnology), Collect. of Czechoslovak Chem. Commun., 52 (1987) 2589-2602.
    [84] S.T. Selvan, T.T. Tan, J.Y. Ying, Robust, Non-Cytotoxic, Silica-Coated CdSe Quantum Dots with Efficient Photoluminescence, Adv. Mater., 17 (2005) 1620-1625.
    [85] 劉晏妮, NaYF4:Yb,Er近紅外光上轉換奈米粒子之製備及應用, 國立成功大學化學工程學系碩士論文, 2011.
    [86] S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method, J. Mater. Chem., 22 (2012) 9696.
    [87] A. Bianco, Graphene: safe or toxic? The two faces of the medal, Angew. Chem. Int. Ed. Engl., 52 (2013) 4986-4997.
    [88] O. Akhavan, E. Ghaderi, A. Akhavan, Size-dependent genotoxicity of graphene nanoplatelets in human stem cells, Biomater., 33 (2012) 8017-8025.

    下載圖示 校內:2015-07-25公開
    校外:2015-07-25公開
    QR CODE