| 研究生: |
洪凡 Hung, Fan |
|---|---|
| 論文名稱: |
應用潛熱儲能材料於太陽能儲熱系統之實驗研究 Experimental Studies of Latent Heat Thermal Storage Materials for Solar Thermal Storage System |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 共同指導教授: |
張克勤
Chang, Ko-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 相變化材料 、儲能系統 、複合式熱能儲存 |
| 外文關鍵詞: | phase change material, energy storage system, cascaded thermal energy storage |
| 相關次數: | 點閱:136 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討應用於太陽熱能之相變化材料(Phase Change Mater- ial, PCM)潛熱儲能系統之建構,議題包括相變化材料的選擇、儲熱槽設計、系統儲熱效能增益措施等概念,研究中探討系統儲熱時相變化材料完成相變化過程所需之儲熱及放熱時間、儲熱系統熱傳行為、相變溫度範圍及PCM兩相介面移動趨勢影響系統效能等要素。本研究除使用熔點約118°C之赤蘚糖醇做為主要相變化材料外,於儲能系統中加入複合式材料熱能儲存概念(Casecaded Thermal Energy Storage, CTES),該實驗模組中串聯三儲存槽,除赤蘚醣醇外亦加入熔點分別為78.8之乙醯胺與94.7°C之木糖醇,利用多種相變化材料擴大儲熱溫度範圍,實驗系統以垂直管型儲存槽及熱傳油迴路構成,內含不同鰭片數及複合式儲存槽組成四組實驗模組,量測相變化材料儲熱穩定性、各模組儲熱與放熱實驗過程溫度變化數據及所需時間、鰭片與複合式儲能概念對於系統熱傳行為及效能之影響,並輔以儲熱系統熱傳模擬估計系統效率,與實驗比較其中差異並分析原因。於各鰭片模組實驗結果中顯示六鰭片模組儲熱過程熱傳效率最高,而四鰭片模組擁有最佳之系統儲熱效能(29.95%),於定溫及變溫熱傳油儲能實驗結果中顯示,複合式材料模組系統效能確實高於單一材料實驗模組,效能最大可提高近兩倍。
The Phase Change Material (PCM) latent heat Thermal Energy Storage (TES) systems for variety of applications such as solar thermal energy storage have received extensive research interesting for a decade. The charging and discharging time, thermal performance of the system, temperature range and propagation of the solid-liquid interface of PCM, the factors which can affect TES system performance, are investigated by using CFD simulation and experimental methods in this study. The results show the performance of TES system can be enhanced by using longitudinal fins and multiple PCMs conception.
1. Pillai, K. and Brinkworth, B., The storage of low grade thermal energy using phase change materials. Applied Energy, 1976.
2. Atul, S., et al., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, Vol. 13, pp. 318-345, 2009
3. Lane, G.A., Solar heat storage: latent heat materials. CRC Press, Boco Raton, FL, 1983.
4. Morrison, D. and Abdel-Khalik, S., Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Solar Energy, Vol. 20, pp. 57-67, 1978.
5. Ghoneim, A.A., Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems. Solar Energy, Vol. 42, pp. 209-220, 1989.
6. Telkes, M. and Raymond, E., Storing solar heat in chemicals. Ind. Heat. Engr. Vol. 12, pp. 119, 1950.
7. Harold, G.L., Kenneth, W.K., and Jesse, C.D., Thermal energy storage for solar heating and off-peak air conditioning. Energy Conversion, Vol. 15, pp. 1-8, 1975.
8. Hill, J.E., et al., Development of proposed standards for testing solar collectors and thermal storage devices. National Bureau of Standards, Washington, DC (USA). Center for Building Technology, 1976.
9. Neeper, D.A., Thermal dynamics of wallboard with latent heat storage. Solar Energy, Vol. 68, pp. 393-403, 2000.
10. El-Sebaii, A.A., et al., Thermal performance of a single basin solar still with PCM as a storage medium. Applied Energy, Vol. 86, pp. 1187-1195, 2009.
11. Domanski, R., Cooking during off-sunshine hours using PCMs as storage media. Energy, Vol. 20, pp. 607-616, 1995.
12. Sharma, S.D., et al., Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Solar Energy, Vol. 78, pp. 416-426, 2005.
13. Yagi, J. and Akiyama, T., Storage of thermal energy for effective use of waste heat from industries. Journal of Materials Processing Technology, Vol. 48, pp. 793-804, 1995.
14. Horst, M. and Robert, P.-P., Cascaded latent heat storage for parabolic trough solar power plants. Solar Energy, Vol. 81, pp. 829-837, 2007.
15. Abhat, A., Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy, Vol. 30, pp. 313-332, 1983.
16. Horbaniuc, B., Dumitrascu, G., and Popescu, A., Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system. Energy Conversion and Management, Vol. 40, pp. 1765-1774, 1999.
17. Sari, A. and Kaygusuz, K., Thermal energy storage system using stearic acid as a phase change material. Solar Energy, Vol. 71(6), pp. 365-376, 2001.
18. Agyenim, F., Eames, P., and Smyth, M., A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy, Vol. 83(9), pp. 1509-1520, 2009.
19. Zivkovic, B. and Fujii, I., An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Solar Energy, Vol. 70(1), pp. 51-61, 2001.
20. Esen, M., Durmu, A., and Durmu, A., Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy, Vol. 62(1), pp. 19-28, 1998.
21. Agyenim, F., Eames, P., and Smyth, M., Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renewable Energy, Vol. 35(1), pp. 198-207, 2010.
22. Bansal, N.K. and Buddhi, D., An analytical study of a latent heat storage system in a cylinder. Energy Conversion and Management, Vol. 33, pp. 235-242, 1992.
23. Ismail, K.A.R., Alves, C.L.F., and Modesto, M.S., Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering, Vol. 21, pp. 53-77, 2001.
24. Agyenim, F., Eames, P., and Smyth, M., Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renewable Energy, Vol. 36, pp. 108-117, 2011.
25. Velraj, R., et al., HEAT TRANSFER ENHANCEMENT IN A LATENT HEAT STORAGE SYSTEM. Solar Energy, Vol. 65, pp. 171-180, 1999.
26. Griffiths, P.W. and Eames, P.C., Performance of chilled ceiling panels using phase change material slurries as the heat transport medium. Applied Thermal Engineering, Vol. 27, pp. 1756-1760, 2007.
27. Hawlader, M.N.A., Uddin, M.S., and Mya Mya, K., Microencapsulated PCM thermal-energy storage system. Applied Energy, Vol. 74, pp. 195-202, 2003.
28. Hamada, Y., Ohtsu, W., and Fukai, J., Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates. Solar Energy, Vol. 75(4), pp. 317-328, 2003.
29. Eman-Bellah, S.M. and Ghazy, M.R.A., Thermal conductivity enhancement in a latent heat storage system. Solar Energy, Vol. 81, pp. 839-845, 2007.
30. Hendra, R., Mahlia, T., and Masjuki, H., Thermal and melting heat transfer characteristics in a latent heat storage system using mikro. Applied thermal engineering, Vol. 25, pp. 1503-1515, 2005.
31. Farid, M.M. and Kanzawa, A., Thermal performance of a heat storage module using PCMs with different melting temperatures: mathematical modeling. Journal of solar energy engineering, Vol. 111(2), pp. 152-157, 1989.
32. Farid, M., Kim, Y., and Kansawa, A., Thermal Performance of a Heat Storage Module Using PCM's With Different Melting Temperature: Experimental. Journal of Solar Energy Engineering, Vol. 112, pp. 125-131, 1990.
33. Gong, Z., et al., Cyclic phase change heat conduction in thin composite slabs. Computational Modelling of Free and Moving Boundary Problems, 1991. 2: p. 105-119.
34. Lim, J., Kim, J., and Bejan, A., Thermodynamic optimization of phase-change energy storage using two or more materials. Journal of Energy Resources Technology, Vol. 114(1), pp. 84-90, 1992.
35. Adebiyi, G., et al., Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase-change storage materials. Journal of energy resources technology, Vol. 118(2), pp. 102-111, 1996.
36. Takayuki, W., Hisashi, K., and Atsushi, K., Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures. Heat Recovery Systems and CHP, Vol. 13, pp. 57-66, 1993.
37. Gong, Z. and Mujumdar, A., A new solar receiver thermal store for space-based activities using multiple composite phase-change materials. Journal of Solar Energy Engineering, Vol. 117, pp. 215-220, 1995.
38. Zhen-Xiang, G. and Arun, S.M., Cyclic heat transfer in a novel storage unit of multiple phase change materials. Applied Thermal Engineering, Vol. 16, pp. 807-815, 1996.
39. Zhen-Xiang, G. and Arun, S.M., Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials. Applied Thermal Engineering, Vol. 17, pp. 1067-1083, 1997.
40. Francis, A., et al., A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, Vol. 14, pp. 615-628, 2010.
41. Kenisarin, M. and Mahkamov, K., Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews, Vol. 11, pp. 1913-1965, 2007.
42. Thakur, R.K., et al., Static Mixers in the Process Industries—A Review. Chemical Engineering Research and Design, Vol. 81, pp. 787-826, 2003.
43. Shukla, A., Buddhi, D., and Sawhney, R.L., Thermal cycling test of few selected inorganic and organic phase change materials. Renewable Energy, Vol. 33, pp. 2606-2614, 2008.
44. Atul, S., Sharma, S.D., and Buddhi, D., Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Conversion and Management, Vol. 43, pp. 1923-1930, 2002.
45. 曾重仁 and 高嘉文, 相變化材料於球形容器之儲熱實驗與分析. 2011.