簡易檢索 / 詳目顯示

研究生: 沈于安
Shen, Ju-An
論文名稱: 正丁醇蒸氣在SiO2(10nm-6nm)與鼠李糖(25nm-8nm)微粒上之非均勻相核凝
Heterogeneous Nucleation of n-Butanol Vapor on Charged/Neutral Nanoparticles of SiO2 From 6 to 10 nm and Rhamnose From 8nm to 25nm
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 121
中文關鍵詞: 非均勻相核凝電噴霧奈米微粒
外文關鍵詞: heterogeneous, electrospray, nanoparticles
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   奈米微粒因為粒徑很小而可能顯現出與巨觀材料性質不同的效應。在大氣中因為天然及人為因素亦產生相當多的奈米微粒,成為大氣氣膠中重要成分。本研究以電噴霧法製備不可溶SiO2 (10nm-6nm)以及可溶鼠李糖(25nm- 8nm)奈米微粒並以流動型雲霧室探討正丁醇蒸氣上所引起之非均勻相核凝機構。
      SiO2微粒與鼠李糖微粒在過飽和正丁醇蒸氣中,臨界過飽和度隨粒徑減小而增大。定性上與理論計算之趨勢相符合,但定量上仍有一段差距。
      電荷效應部分,SiO2微粒於實驗範圍中可觀察到電荷效應對核凝現象的影響,但效果並不明顯,與理論相符。鼠李糖微粒電荷效應則不明顯。電荷極性效應部分,SiO2微粒於實驗範圍中,帶單一負電對正丁醇蒸氣的核凝能力大於帶單一正電微粒,與部分理論相矛盾。可往更小粒徑去探討電荷極性效應對核凝現象的影響。鼠李糖單一正電微粒在正丁醇蒸氣中核凝能力則大於帶單一負電微粒,與理論相符。
      可溶性微粒與不可溶性微粒比較方面,實驗結果與理論相符,可溶性微粒臨界過飽和度皆小於不可溶性微粒。

     Nanoparticles may have a property different from the bulk due to such a small size. Recently, the subjects concerning their production, properties and applications have received extensively attention and been intensively investigated. On the other hand, nanoparticles are generated due to natural and anthropogenic activities, and become an important component of the atmospheric aerosols.A systematic study on the heterogeneous nucleation of n-butanol vapor on neutral and various single-charged nanoparticles of SiO2(10nm to 6nm)/Rhamnose(8nm-25nm) is performed employing an electro- spraying device and a flow cloud chamber (FCC).
     The results show that the experimental critical supersaturation,Scr, decreases with increasing particle size, at a rate in reasonable agreement with that predicted by Fletcher’s version of Volmer’s theory of heterogeneous nucleation.
     The Scr of neutral and charged SiO2 particles are slightly different.On the other hand, a charged effect on Scr is observed. The condensation on single- charged positive and single-charged negative particles are also examined. N-butanol vapor is more readily to condense on single-charged negative SiO2 particles and single-charged positive Rhamnose particles.
     Solube particle Scr is smaller than insoluble particle Scr, in agreement with the theoretical prediction.

    中文摘要……………………………………………………Ⅰ 英文摘要……………………………………………………Ⅱ 誌謝…………………………………………………………Ⅲ 目錄…………………………………………………………Ⅳ 圖目錄………………………………………………………Ⅶ 表目錄………………………………………………………Ⅹ 符號說明……………………………………………………XI 第一章 緒言 1 1.1簡介………………………………………………………1 1.2非均勻相核凝回顧………………………………………3 1.3正丁醇蒸氣於帶電微粒上之核凝………………………7 1.4研究目標…………………………………………………8 第二章 理論分析 9 2.1核凝理論…………………………………………………9 2.1.1不可溶中性微粒ΔG之計算…………………………..11 2.1.2不可溶帶電微粒ΔG之計算…………………………17 2.1.3可溶中性微粒ΔG之計算……………………………18 2.1.3.1可溶微粒尚未完全溶解…………………………….19 2.1.3.2微粒已完全溶解…………………………………….20 2.1.4可溶性帶電微粒ΔG之計算 ...………………………21 2.1.4.1可溶微粒尚未完全溶解…………………………… 21 2.1.4.2可溶微粒已完全溶解……………………………….22 2.2雲霧室中溫度與濃度分佈……………………………...25 2.3電噴霧法………………………………………………...29 第三章 實驗系統與操作 35 3.1實驗系統………………………………………………...35 3.1.1微粒產生器……………………………………………37 3.1.2電力篩選器……………………………………………42 3.1.3微粒電荷中和器………………………………………46 3.1.4電場收集器……………………………………………47 3.1.5流動型雲霧室…………………………………………49 3.1.6超細微粒凝結核計數器………………………………52 3.2實驗步驟………………………………………………...54 3.2.1電噴霧系統操作………………………………………54 3.2.2掃描式粒徑分析儀……………………………………56 3.2.3去除效率實驗…………………………………………57 3.2.4理論模擬臨界過飽和度……………………………….61 第四章 實驗結果與討論 63 4.1電噴霧法製備之微粒粒徑分佈…………………………64 4.1.1製備SiO2微粒…………………………………………64 4.1.2製備鼠李糖微粒……………………………………….70 4.2微粒之粒徑分佈…………………………………………77 4.3微粒之TEM分析………………………………………..78 4.4空白實驗….………………………………………………79 4.5去除效率實驗結果……………………………………….81 4.6理論值與不帶電微粒實驗值之比較…………………….86 4.7電荷效應對臨界過飽和度之影響……………………….95 4.8電荷極性效應對臨界過飽和度之影響…………………106 4.9可溶性微粒與不可溶性微粒之比較……………………112 第五章 結論 115 參考文獻 117

    1. N.H.Fletcher,“The Physics of Rainclouds”,1st Ed.,( Cambridge University Press), p.390 (1969).
    2. Chin-Cheng Chen and Chun-Ju Tao, J.Chem. Phys.112,15(2000) .
    3. W. C. Hinds, “Aerosol Techmology”, (Wiley, New York), (1982).
    4. M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi ,J. Chem. Mater.8, 173. (1996)
    5. C.H.Chen, M. H. J. Emond, E. M. Kelder, B. Meester and J. Schoonman, J. Aerosol Sci. 30, 7, 959(1999).
    6. Zeleny, Z. Proc. Camb. Phil. Soc. 18, 71(1915).
    7. Stanley L. Kaufman, J. Aerosol Sci. 29, 5/6 ,537,(1998).
    8. K.Tang and A. Gomez , J. Aerosol Sci. 25, 6 ,1237,(1994).
    9. Stanley L. Kaufman, Analytical Chemistry News & Features.4, 6, 386A.
    10. M. Cloupeau and B. Prunet-Foch, Journal of Electrostatics,22,135 (1989).
    11. Da-Ren Chen,*David Y. H. Pui* and Stanley L. Kaufman, J.Aerosol Sci,26,6.963(1995).
    12. Volmer, M., and Weber, A., Z. Physik. Chem. (Leipzig) 119, 227
    (1926).
    13. Fletcher, N. H, J. Chem. Phys. 29, 572-576 (1958).
    14. Lamer, V. K. and Gruen ,R., Trans. Faraday Soc. 48, 410 (1952).
    15. Twomey, S., J. Chem. Phys. 30, 941 (1959).
    16. Koutsky, J. A., Walton, A. G., and Baer, E., Surface Sci. 3,165 (1965).
    17. Jameson, G. J., and Del Cerro, M. C., J. Chem. Soc. Faraday Trans. I 72, 883 (1976).
    18. Saville, G., J. Chem. Soc. Faraday Trans. II 73, 1122 (1977).
    19. White, L. R., J. Chem. Soc. Faraday Trans. I 73, 390 (1977).
    20. Lazaridis, M., J. Colloid Interface Sci. 155, 38 6(1993).
    21.蔡聞庭,”正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose次微米微粒上之非均勻相核凝” ,碩士論文,國立成功大學化工系,(2000).
    22.陳彥宇,”電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝”,碩士論文,國立成功大學化工系,(2003).
    23. L. B. Loeb, A.F.Kip and A.W.Einarsson, J.Chen Phys.,6,265(1938).
    24. F. He, P.K. Hopke, J. Chen. Phys.,99,9972(1993).
    25. J.L. Katz, J.A. Fisk and V.M. Chakarov, J. Chem. Phys,101,2309(1994).
    26. J.M.Mäkelä, A. Ukkonen, V. Jokinen, and J. Keskunen, J. Chem. Phys.,105,1562(1996).
    27. T. Seto, K. Okuyama,L. de Juan and F. de la Mora, J. Chem. Phys,107,1576(1997).
    28. W. J. Dunning, “Chemistry of the Solid State”, (Academic Press), NY.
    (1955).
    29.鄭秀津,”水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝” ,碩士論文,國立成功大學化工系,(2002).
    30. J.J. Thomson, 3rd.Ed.,Vol1 (Cambridge University, Cambridge, 1928),99,320.
    31. M. Volmer, ”Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden (1939).
    32. K. C. Russell, J. Chem. Phys., 50, 1809(1969).
    33. C. H. Chen,*M.H.J.Emond et al ,J. Aerosol Sci.30,7,959(1999).
    34. White, L. R., J. Chem. Soc. Faraday Trans. I 73, 390 (1977).
    35. Model 3071A Electrostatic Classifier,TSI company.
    36. C.C. C. Chen, L. C. Hung, and H. K. Hsu , J. Colloid Interface Sci., 157,465 (1993).
    37. Katz, J.L. and Mirabel, P., “Calculation of supersaturation profiles in thermal diffusion cloud-chamber”, J. Atmos. Phys., 32, p.646(1975)
    38.陶君儒,”水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸次微米微粒上之非均勻相核凝現象”,博士論文,國立成功大學化工系,(2000).
    39. M. Cloupeau and B. Prunet-Foch (1988), Journal of Electrostatics, 22,135(1989).
    40. J. Rosell-Llompart and J. Fernandez De La Mora(1994), J. Aerosol Sci. 25, 6 ,1093, 1994.
    41. M. Cloupeau and B. Prunet-Foch (1994), J. Aerosol Sci. 25, 6,p. 1021, 1994.
    42. W. Franklin Smyth, “Trends in analytical chemistry”, 1999, V.18, n.5,
    p.335.
    43. Da-Ren Chen,*David Y. H. Pui* and Stanley L. Kaufman, J.Aerosol Sci,26,6.963(1995).
    44. S. L. Kaufman, “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular” Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999).
    45. R.P.A.Hartman, D.J.Brunner, D.M.A.Camelot, J.C.M.Marijnissen and B.Scarlett, J.Aerosol Sci.,2000,31,1,65.
    46. M. Cloupeau and B. Prunet-Foch, Journal of Electrostatics,22,135
    (1989).
    47. T.K.Burayev and I.P. Vereshchagin, Fluid Mech.,Sov.Res.,1,56(1972).
    48. D.P.H.Smith, IEEE Trans. Ind.Appl.,1A-22, 527(1986).
    49. J.Zeleny, Phys.Rev.,10, 1-6(1917).
    50. G. Taylor and M.D. Van Dyke,Proc. R. Soc.London, Ser.A, 313
    , 453(1969).
    51. Vonnegut, B.and Neubauer,R.L.(1952), J.Colloid Sci., 7,616.
    52. Michel Cloupeau and Bernard Prunet-Foch , J.Aerosol Sci.,25,6,1021(1994).
    53.林佳德,”正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝” ,碩士論文,國立成功大學化工系,(2004).
    54. Model 3936 SMPS (Scanning Mobility Particle Sizer) Instruction Manual, TSI Inc. (2002).
    55. Model 3080, Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
    56. Model 3071A Electrostatic Classifier, TSI company.
    57. Model 3077 Aerosol Neutralizer, TSI company.
    58.郭明升,”水蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系,(1995).
    59. C.C. C. Chen, L. C. Hung, and H. K. Hsu , J. Colloid Interface Sci., 157,465 (1993).
    60. J. L. Katz,”Condensation of a Supersaturated Vapor, I. “The homogenepus Nucleation of the n-Alkanes”,J. Chem. Phys.,52,4733(1970).
    61. Model 3934 Scanning Mobility Particle Sizer,TSI company.
    62.黃崇銓,”正丁醇蒸汽在不溶性無機次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系(1996).
    63. Chin-Cheng Chen and Wen-Tin Tsai, J. Colloid Interface Sci. 246, 270-280(2002)
    64. Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI Inc.(2002).
    65. Katz, J.L. and Ostermier, B.J., “Diffusion cloud chamber investigation of homogeneous nucleation”, J. Chem. Phys., 47, p.478(1967)
    66. B.Gorbunov and R.Hamilton ,”Water Nucleation on Aerosol Particles Containing both Soluble and Insoluble Substances,”J.Aerosol Sci.,28,2,239(1997).
    67. H. R. Pruppacher and J. D. Klett, “Microphysics of Clouds and Precipitation ”,Reidel, Holland, 714 pp. (1980).
    68.許豪仁,”正丁醇蒸汽在味精與乳糖次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系,(1997).
    69. H.Stephen,T.Stephen ,”Solubilities of Inorganic and Organic Compounds ,”p.1975,pergamon Press.
    70. J. A Dean, “ Lange’s Handbook of Chemistry”, McGraw Hill Inc., NY.(1992)
    71. J. W. P. Schmelzer, I. Gutzow, and J. Schmelzer, Jr.,” Curvature-Dependent Surface Tension and Nucleation Theory”, J. Colloid Interface Sci.,178,657(1996).

    下載圖示 校內:立即公開
    校外:2005-07-28公開
    QR CODE