| 研究生: |
李翊呈 Lee, Yi-Cheng |
|---|---|
| 論文名稱: |
甲烷直管火焰傳遞之火焰面積分析 Surface Area Analysis of Methane Flame Propagating in Straight Tube |
| 指導教授: |
袁曉峰
Yuan, Hsiao-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 甲烷 、一氧化碳 、混合燃氣 、層流火焰速度 、火焰傳遞速度 、火焰面積 |
| 外文關鍵詞: | Methane, Carbon monoxide, Mixed gas, Flame area. |
| 相關次數: | 點閱:102 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣化生質能主要可燃成分為氫氣、一氧化碳及甲烷,對其混合燃燒特性的了解,是氣化生質能應用的必要條件。層流火焰速度是界定燃料燃燒特性的基本參數,應用在紊流火焰之模擬與為燃燒室設計分析等。本論文主要針對甲烷(CH4)搭配一氧化碳(CO)之混合燃氣進行研究,使用自行設計的直管系統進行火焰觀察,並採用光學多點量測技術,觀察常壓下不同當量比及不同混合比例之火焰傳遞速度以及火焰面積變化,以估算層流火焰速度,並與文獻資料比較。
本實驗應用光電二極體觀察火燄通過直管截面多點位置之時間差,並配合火焰傳遞速度量測值以估算火燄面積及計算層流火焰速度;由誤差分析顯示,利用多點量測技術所計算之層流火焰速度,在不同混合比例下之誤差介於5~10%之間。實驗結果顯示火焰傳遞速度與層流火焰速度均隨著均隨著CO混合比([CO]/([CH4]+[CO]))增加而加速,而火焰面積是在85%CO時達到最大值。與文獻比對,顯示本研究所得火焰速度較文獻數據略低,但具備相同的趨勢,顯示本直管火燄速度量測技術之可靠度。
The major combustible components from gasification of biomass are hydrogen (H2), carbon monoxide (CO) and methane (CH4). In order to fully utilize the gasified products, an understanding of the combustion characteristics of the product mixtures is crucial. Laminar flame speed is one of the important properties to characterize fuel gas burning for combustion chamber design as well as in the simulation of turbulent flame propagation. This thesis research focuses on the combustion of the mixtures of CH4 CO. By using a self-designed tube method, the flame propagation speeds along the tube are measured by photodiode. Coupled with the flame area estimation by the time-gap measurements of flame front arrival at different position at the same cross section, the laminar flame speed can be deduced. At different equivalence ratios (∅=0.85,1.0,1.15) and different mixing ratios of Methane and carbon monoxide, the laminar flame speeds are researched and compare with that in the literature.
From error analysis, the uncertainty of the developed tube method for flame speed measurement is between 5 to 10%. The experimental results show that the flame propagation speeds and the deuced laminar speed increase with the amount of carbon monoxide addition until near 85%CO. Higher CO addition decreases the flame speed. Comparing with that in the literature, the measured flame speeds are slightly lower, however possesses the same trend variation, that indicates the reliability of the developed tube measurement method.
[1] 經濟部能源局網站(www.moeaboe.tw),105年國內能源供需概況
[2] 廢棄物能源利用技術開發與推廣計畫,經濟部能源局委辦,財團法人工業技術研究院執行,93年
[3] K.K. Kuo, PRINCIPLES OF COMBUSTION, SECOND EDITION Chapter 5, Wiley-interscience, 2005
[4] E. Mallard and H.L. LeChatelier, Ann. Mines 4:379, 1883
[5] V. Karpov, A. LipatniKov and V. Zimont, Twenty-Sixth International Symposium on Combustion, 1996
[6] R.G. Abdel-Gayed, and D. Bradley, Philosophical Transactions of the Royal Society, A301(1457):1, 1981
[7] N.A Al-Dabbagh, and G.E. Andrews, Combustion and Flame 55:31-52, 1984
[8] G.E. Andrews, D. Bradley, Combustion and Flame, 18:133-153, 1972
[9] J. Natarajan, T. Lieuwen and J. Seitzman, Combustion and Flame,151:104-119, 2007
[10] Powling, J. “A new burner method for the determination of low burner velocities and limits of inflammability”, Fuel 28:25, 1949
[11] J. P. Botha, D.B. Splading, “The laminar flame speed of propane/air mixtures with heat extraction from the flame”, 1954
[12] F.N. Egolfopoulos, H. Zhang, and Z. Zhang, Combustion and Flame, 109:237-252, 1997
[13] F.N. Egolfopoulos, P. Cho, C.K. Law, Combustion and Flame, 76:375-391, 1989
[14] R.J. Kee. J.F. Grcar, M.D. Smoke, and J.A. Miller, Sandia Repot SAND85-8240, 1985
[15] Warnatz J., Combustion Chemistry (W.C. Gardiner, Jr., Ed.), Springer-Verlag, New York, p.197, 1984
[16] M. Ilbas, A.P. Crayford, I. Yilmaza, P.J. Bowen, N. Syred, International Journal of Hydrogen Energy, 31:1768-1779, 2006
[17] Khizer Saeed, C.R. Stone, Combustion and Flame, 139:152-166, 2004
[18] H.N. Phylakton, G.E. Andrews, and P. Herath, Journal of Loss Prevention in the Process Industries, 3:355-364, 1990
[19] H.F. Coward and F.J. Hartwell. Journal of the Chemical society, 2676-2684, 1932
[20] 王煥清, CH4/CO/AIR混合燃氣之火焰速度分析, 碩士論文, 成功大學, 2010
[21] G. Yu, C.K. Law, C.K. Wu, Combustion and Flame, 63:339-347, 1986
[22] B.E. Milton, J.C. Keck, Combustion and Flame, 58:13-22, 1984
[23] C.K. Law, and O.C. Kown, International Journal of Hydrogen Energy, 29:867-879, 2004
[24] T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:503-510, 1959
[25] T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:511-524, 1959
[26] C.M. Vagelopoulos and F.N. Egolfopoulos, Twenty-Fifth Symposium (International) on Combustion/The Combustion Institute,1317-1323, 1994
[27] B. Lewis, “Discussion” Selected Combustion Problem, AGARD, p.177, 1954
[28] A.M. Kanury, Introduction to Combustion Phenomena, Chapter 8, Gordon and Breach, New York, 1975
[29] T.W. Reynolds, and M. Gerstein, Third Symposium (International) on Combustion/The Combustion Institute, p.190-194, 1949
[30] C. Tanford, and R.N. Pease, Journal of Chemical Physics, vol.15, p.431, 1947
[31] C.-Y. Wu, Y.-C. Chao, T.S. Cheng, C.-P. Chen, C.-T. Ho, Combustion and Flame, 156:362-373, 2009
[32]賴昱元, 丙烷層流火焰速度之直管量測與分析, 碩士論文, 成功大學, 2011