| 研究生: |
蘇凱群 Su, Kai-Chun |
|---|---|
| 論文名稱: |
應用電性鑑別偵測法於微免疫分析晶片之研究 Study of Micro-Chip for Electro-Immunoassay in Real-Time |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 奈米粒子 、電性鑑別 、酵素免疫分析 、生物晶片 、微機電 |
| 外文關鍵詞: | nano-particle, ELISA, Electro-Immunoassay, Biochip, MEMS |
| 相關次數: | 點閱:144 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目地為發展電性鑑別法於微量化的酵素免疫分析檢驗,並致力於提昇檢疫的各項反應表現。運用微機電系統 (MEMS, Micro-Electro-Mechanical Systems)的製程技術來設計與製造『微電極免疫分析檢驗晶片』,以晶片微小化達到容納大量資訊、減少檢測時間、降低試劑成本及提高檢測靈敏度等檢疫要求。
電性免疫檢測法(Electro-Immunoassay)運用電磁學中的集膚效應作為理論依據,有別於傳統呈色判定的酵素免疫分析,並利用高頻電子訊號方式來完成實驗鑑定與定量工作。鑑別方式藉由相位、阻抗、電阻、電抗於頻率響應後的變化結果,來完成免疫檢驗的分析與判斷。此外,依循物理機制的設計概念,研究將晶片搭配金奈米粒子(13 nm)作兩個不同方面的探討:(一)晶片表面先接著奈米粒子以提高檢測區內的反應表面積,是否能有效放大電性訊號的反應結果;(二)在檢疫反應最後加入帶有結合奈米粒子的二次抗體以捕捉檢測抗原,是否能造成晶片表面的阻抗變化。以上討論均以運用奈米粒子的微觀物理效應而達到快速鑑別的目地。
綜合實驗結果發現,電性偵測在頻域上具有明顯的鑑別性,而且抗體與抗原的即時反應過程可表現於動態的電性量測上,而在檢測極限方面,待測抗原濃度的偵測靈敏度可達到 10-8 g/ml。此外,金奈米粒子的運用雖無助於偵測靈敏度的提升,但有助於量測結果的判斷與鑑別。由此可知,電性鑑別方式可運用於酵素免疫分析的檢疫反應上。
In this study, a novel Micro-Electrode Biochip for Immunoassay was designed and fabricated by using MEMS (Micro Electro-Mechanical Systems) technique. The characteristics of Micro-Electrode Biochip with a capacity of efficient informative nano-samples had been developed for the purpose of decreasing reaction time and the cost. On the Biochip, we were devoted to the study of the sensitivity of detection limit and took advantages of traditional ELISA in time.
Following the skin effect from Maxwell equation, we analyzed the signals from the electrodes on the chip. Measured impedance changes in frequency domain would help us to identify the result of Electro-Immunoassay. In order to improve the reaction and economize on time, conjugated with Au nano-particles was adopted to amplify the output signal of impedance measurement and distinguish the specific antigen easily and rapidly. Four parameters, phase, impedance, resistance and reactance, of electric properties under different testing voltages had been discussed to identify in the analysis of frequency/impedance spectroscopy.
Finally, we had found out some interest results in characteristic curves of electric signals. The reaction between antibody and antigen in real time could be detected in electrical measurement through high frequency domain. Furthermore, the detection limit in the concentration of antigen was 10-8 g per milliliter. In another hand, Micro-Electrode Biochip conjugated with Nano-Au (13 nm) for Electro-Immunoassay was conveniently in signal discrimination. The results of this study had been confirmed excellent influences in Immuno-topic.
[1] M. Washizu, "Manipulation of Biological Objects in Micro Machined Structures," Micro Electro Mechanical Systems, pp. 196-201, 1992.
[2] J. Noreen, P. Brofmam, "Interconnection Considerations for a Hybrid MCM," Conference on MCM '94 Proceedings, pp. 299-305, 1994.
[3] D. A. Borkholder, I. E. Opris, N. I. Maluf, G. T. A. Kovacs, "Planar Electrode Array Systems for Neural Recording and Impedance Measurements," Conference on IEEE Engineering in Medicine and Biology Society, pp. 106-107, 1996.
[4] D. A. Borkholder, J. Bao, N. I. Maluf, E. R. Perl, G. T. A. Kovacs, "Microelectrode Arrays for Stimulation of Neural Slice Preparations," Journal of Neuroscience Methods, 101, pp. 61-66, 1997.
[5] P. V. Gerwen, W. Laureys, G. Huyberechts, M. O. D. Beeck, K. Baert, "Nanoscaled Interdigitated Electrode Arrays for Biochemical Sensors," Conference on Solid-State Sensors and Actuators, pp. 907-910, 1997.
[6] P. Caillat, M. Belleville, C. Massit, "Active CMOS Biochip: An Electro-Addressed DNA Probe," Conference on IEEE International Solid-State Circuit, pp. 272-273, 1998.
[7] P. N. Gilles, D. J. Wu, C. B. Foster, P. J. Dillon, S. J. Chanock, "Single Nucleotide Polymorphic Discrimination by an Electronic Dot Blot Assay on Semiconductor Microchips," Nature Biotechnology, 17, pp. 365-370, 1998.
[8] H. Beutel, T. Stieglitz, J. U. Meyer, "Microflex: A New Technique for Hybrid Integration for Microsystems," Conference on IEEE Solid-State Sensors and Actuators, pp. 306-311, 1998.
[9] P. Swanson, R. Gelbart, S. Graham, L. Yang, W. Butler, D. E. Ackley, E. Sheldon, "A Fully Multiplexed CMOS Biochip for DNA Analysis," Conference on Solid-State Sensors and Actuators, pp. 133, 1999.
[10] G. Marrazza, I. Chianella, and M. Mascini, "Disposable DNA Electrochemical Sensor for Hybridization Detection," Biosensors and Bioelectronic, 14, pp. 43-51, 1999.
[11] B. D. DeBusschere, A. M. Aravanis, and A. J. Chruscinski, "Genetically Engineered Cell-Based Biosensors for Specific Agent Classification," Conference on Solid-State Sensors and Actuators, pp. 65-71, 1999.
[12] T. Livache, H. Bazin, and G. Mathis, "Conducting Polymers on Microelectronic Devices as Tolls for Biological Analyses," Clinical Chemical ACTA, 278, pp. 171-176, 1998.
[13] T. Livache, B. Fouque, A. Roget, J. Marchand, G. Bidan, R. Toule, and G. Mathis, "Polypropylene DNA Chip on a Silicon Device: Example of Hepatitis C Virus Genotyping," Analytical Biochemistry, 255, pp. 188-194, 1998.
[14] S. Suzuki, T. Yammanashi, S. I. Tazawa, O. Kuroswa, M. Washizu, "Quantitative Analysis of DNA Orientation in Stationary AC Electric Field Using Fluorescence Anisotropy," Conference on IEEE Solid-State Sensors and Actuators, pp. 1374-1382, 1995.
[15] S. Suzuki, T. Yammanashi, S. I. Tazawa, "Quantitative Analysis of DNA Orientation in Stationary AC Electric Field Using Fluorescence Anisotropy," IEEE Transactions on Industry Applications, 34, pp. 75-83, 1998.
[16] W. Laureyn, F. Frederix, P. V. Gerwen, and G. Maes, "Nanoscaled interdigitated gold electrodes for impedimetric immunosensing," Transducers '99, Digest of Technical Papers, Sendai, Japan, pp. 1884-1885, 1999.
[17] P. V. Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. O. D. Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens, "Nanoscaled interdigitated electrode arrays for biochemical sensors", Sensors and Actuators B, 49, pp. 73-80, 1999.
[18] W. Laureyn, D. Nelis, P. V. Gerwen, K. Baert, L. Hermans, R. Magnee, J. J. Pireaux, G. Maes, "Nanoscaled interdigitated titanium electrodes for impedimetric biosensing," Sensors and Actuators B, 68, pp. 360-370, 2000.
[19] Y. Huang, K. L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M. J. Heller, J. P. O'Connell, and M. Krihak, "Electric Manipulation of Bioparticles and Macromolecules on Microfabricated Electrodes," Analytical Chemistry, 73, pp. 1549-1559, 2001.
[20] S. J. Park, T. A. Taton, C. A. Mirkin, "Array-Based Electrical Detection of DNA with Nanoparticle Probes," Science, 295, pp. 1503-1506, 2002.
[21] Y. C. Lin, M. Li, C.Y. Wu, W.C. Hsiao, and Y.C. Chung, "Microchips for Cell-type Identification." The Seventh International Symposium on Micro Total Analysis System, μTAS 2003, California, USA, pp. 729-732, 2003.
[22] S. O. Kasap, Principles of Electronic Materials and Devices, Second Edition, McGraw-Hill, pp. 148-152, 2002.
[23] 賴建芳,電場應用於寡核甘酸探針反應之生物晶片研究,國立成功大學碩士論文,民國八十八年。
[24] "Agilent 4396B Network / Spectrum / Impedance Analyzer Option 010 - Operating Handbook," Agilent Technologies Inc., Japan, 2002.
[25] A. J. Bard, L. R. Faulkner, Electrochemical Methods - Fundamentals and Applications, Second Edition, John Wiley & Sons, INC., pp. 808, 2001.
[26] T. Kotnik, D. Miklavcic, "Analytical Description of Transmembrane Voltage Induced by Electric Fieldson Spheroidal Cells," Journal of Biophysical, 79, pp. 670-679, 2000.
[27] P. V. Gerwen, W. Laureys, G. Huyberechts, M. O. Beeck, K. Baert, J. Suls, A. Varian, W. Sansen, L. Hermans, and R. Mertens, "Nanoscaled Interdigitated Electrode Arrays for Biochemical Sensor," Transducers `97, International Conference on Solid-State Sensors and Actuators, Chicago, pp. 907-910, 1997.
[28] M. Madou, Fundamentals of Microfabrication, CRC, pp. 97-102, 1997.
[29] S. M. Sze, VLSI Technology, McGraw-Hill, pp. 386-400, 1998.
[30] 莊達人,VLSI 製造技術,高立圖書,pp. 235-261,1997。
[31] Byung-Ho Jo, Linda M. Van Lerberghe, Kathleen M. Motsegood, and David J. Beebe, "Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer" Journal of Micro- Electromechanical Systems, 9, pp. 76-81, 2000.