簡易檢索 / 詳目顯示

研究生: 楊宗育
Yang, Tsung-Yu
論文名稱: 偏氟-三氟乙烯共聚物/鋯鈦酸鋇絕緣層於五環素有機薄膜電晶體及非揮發性記憶體之應用
Hybrid Ferroelectric P(VDF-TrFE)/BZT Insulators for Pentacene-Based Thin Film Transistors and Nonvolatile Memory Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 92
中文關鍵詞: 有機薄膜電晶體偏氟-三氟乙烯共聚物雙層介電層結構記憶體
外文關鍵詞: organic thin film transistor, P(VDF-TrFE), hybrid insulator structure, nonvolatile memory
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用偏氟-三氟乙烯共聚物/鋯鈦酸鋇絕緣層於五環素有機薄膜電晶體,結合鐵電性及高介電常數的優點展現出良好的電晶體特性及記憶體特性,如: 低操作偏壓(±10V) 、高場效載子遷移率(4.65 cm2V-1s-1)以及大記憶視窗(6.7V)。透過極化量測、XRD分析來確認鐵電層在分層狀況下能有效表現出鐵電特性。並且藉由漏電流量測、AFM分析能有效抑制漏電流,改善表面接面。而藉由分層結構的改變可以發現記憶體整體臨界電壓的偏移,甚至影響整體元件的操作模式,透過模型的探討可以更進一步分析分層介面操作機制。

    Pentacene-based organic thin-film transistors with ferroelectric P(VDF-TrFE)/BZT as gate dielectrics were demonstrated. By combining the advantages of ferroelectric material and high-κ dielectric, the devices show the good performances of both transistor and memory characteristics. Electrical properties of pentacene-based thin-film transistors show low operation voltage of ±10 V, high field-effect mobility of 4.65 cm2V-1s-1, and large memory window of 6.7V in ±10V.
    The ferroelectricity can be confirmed by polarization and X-ray diffraction measurements. Moreover, the leakage current and the interface of pentacene are effectively improved by the structure of hybrid P(VDF-TrFE)/BZT. Finally, the shift of the threshold voltage can be observed by the variety of insulator structure from sandwich to hybrid structure. The role of interface between P(VDF-TrFE) and BZT was discussed by the proposed mechanisms.

    摘要 I Abstract II 致謝 IV Contents V Figure Captions VII Table Captions IX Chapter 1 Introduction 1 1-1 Introduction to the development of FeOTFTs 1 1-2 Advantages of ferroelectric organic thin film transistors 2 1-3 Motivation 3 1-4 Organization 6 Chapter 2 Organic Ferroelectric Insulators 9 2-1 Physics of ferroelectricity 9 2-2 P(VDF-TrFE) organic ferroelectric material 14 Chapter 3 Principle of Organic FeTFT 18 3-1 Organic FeTFTs 18 3-2 Operating mode 20 3-3 Output characteristics of OTFT 23 3-3-1 Linear regime 23 3-3-2 Saturation regime 25 3-4 Critical parameters of OTFTs 27 3-4-1 Field effect mobility 27 3-4-2 Threshold Voltage 28 3-4-3 On/Off current ratio 29 3-5 Parameters of nonvolatile memory device 31 3-5-1 Memory window 31 3-5-2 On/Off ratio 31 3-5-3 Operation voltage 31 3-5-4 Retention and endurance 32 Chapter 4 Experiments 34 4-1 Experimental materials 34 4-2 Fabrication equipments 38 4-2-1 Sputter, Physical vapor deposition (PVD) 38 4-2-2 Thermal evaporator 38 4-2-3 Spin coater 39 4-3 Solution preparation 41 4-4 Experimental procedure 42 4-4-1 Substrate cleaning 42 4-4-2 Gate electrode 43 4-4-3 Insulator layer 43 4-4-3-1 Sandwich structure 43 4-4-3-2 Hybrid structure 44 4-4-4 Active layer 45 4-4-5 Source and Drain electrodes 45 4-5 Measurement System 49 4-5-1 Current-Voltage (I-V) measurement 49 4-5-2 Capacitance-Voltage (C-V) measurement 49 4-5-3 Hysteresis measurement 49 4-5-4 Atomic Force Microscope (AFM) 49 4-5-5 X-ray Diffraction (XRD) 50 Chapter 5 Results and Discussion 52 5-1 P(VDF-TrFE) thin film analysis 52 5-2 Sandwich structure BZT/P(VDF-TrFE)/BZT insulator ferroelectric OTFT 54 5-2-1 Electrical properties 54 5-2-1-1 MIM measurement 54 5-2-1-2 I-V measurement 57 5-2-1-3 Memory measurement 59 5-2-2 X-ray diffraction (XRD) analysis 63 5-2-3 Surface Morphology 65 5-3 Hybrid P(VDF-TrFE)/BZT structure for ferroelectric OTFT gate insulator 67 5-3-1 Electrical properties 67 5-3-1-1 MIM measurement 67 5-3-1-2 Memory measurement 71 5-3-2 X-ray diffraction (XRD) analysis 78 5-3-3 Surface Morphology 78 5-4 Mechanism 82 Chapter 6 Conclusion and Future prospect 85 6-1 Conclusions 85 6-2 Future prospect 86 References 87

    [1] P. M. Heyman, G. H. Heilmeier, “A ferroelectric field effect device,” Proceedings, IEEE, vol.54, p. 842, 1966.

    [2] S. M. Sze, and K. K. Ng, Physics of semiconductor devices. 3rd ed. Hoboken, NJ: Wiley-InterScience; 2007.

    [3] G Velu, C Legrand, O Tharaud, A Chapoton, D Remiens, G Horowitz, “Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator,” Appl. Phys. Lett., vol.79, pp. 659–661, 2001.

    [4] H. E. Katz, X. M. Hong, A. Dodabalapur, and R. Sarpeshkar, “Organic field effect transistors with polarizable gate insulators,” J. Appl. Phys., vol.91, pp. 1572-1576, 2002.

    [5] M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz, T. J. Marks, “Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements,” J. Am. Chem. Soc. vol.125, pp. 9414-9423, 2003.

    [6] G. A. Salvatore, D. Bouvet, I. Stolitchnov, N. Setter, and A. M. Ionescu, “Low voltage ferroelectric FET with sub-100 nm copolymer P(VDF-TrFE) gate dielectric for non-volatile 1T memory”, Solid State Device Research Conf., ESSDER, 38th European, pp. 162-165, 2008.

    [7] R. Schroeder, L. A. Majewski, M. Grell, “ All-organic permanent memory transistor using an amorphous, spin-cast ferroelecric-like gate insulator,” Adv. Mater., Vol. 16, pp. 633 – 636, 2004.

    [8] Y. Matsuo, T. Ijicji, H. Yamada, J. Hatori, and S. Ikehata, “Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene”, Central Eurpean J. Phys., Vol. 2, pp. 357 – 366, 2004.

    [9] K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” , J. Appl. Phys., Vol. 46, pp 2877 – 2881, 1975

    [10] A. Kingon, P. Muralt, N. Setter, and R. Waser, Ceramic materials for electronics, edited by R. E. Buchanan, Dekker, New York, USA, pp. 465–526, 2004.

    [11] R. C. G. Naber, “Ferroelectricity-functionalized organic field-effect transistors,” PhD thesis. Nijenborgh, The Netherlands: University of Groningen; 2006.

    [12] Mile long printed logic circuites for RFID tags. http://www.polyic.com/en/press-images.php; 2006

    [13] N. A. Basit, H. K. Kim, and J. Blachere, “Growth of highly oriented Pb(Zr, Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors,” Appl. Phys. Lett., vol.73, p. 3941, 1998.

    [14] C. H. Seager, D. C. McIntyre, W. L. Warren, and B. A. Tuttle, “Charge trapping and device behavior in ferroelectric memories,” Appl. Phys. Lett., vol.68, p. 2660, 1996.

    [15] T. P. Ma, and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive?” IEEE Electron. Device Lett., vol.23, p. 386, 2002.

    [16] H. Kohlstedt , Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Böttger, and R Waser, “Current status and challenges of ferroelectric memory devices,” Microelectron. Eng., vol.80, pp. 296-304, 2005.

    [17] C. A. Nguyen, S. G. Mhaisalkar, J. Ma, and P. S. Lee, “Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric,” Org. Electron., vol.9, pp. 1087-1092, 2008.

    [18] S. W. Jung, K. J. Baeg, S. M. Yoon, I. K. You, J. K. Lee, Y. S. Kim, and Y. Y. Noh, “Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly„vinylidene fluoride-trifluoroethylene/poly„methyl methacrylate dielectrics,” J. Appl. Phys., vol. 108, pp. 102810, 2010.

    [19] B. Stadlober, M. Zirkl, M.l Beutl, G. Leising, and S. B. Gogonea and S. Bauer, “High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric,” Appl. Phys. Lett., vol.86, p. 242902, 2005.

    [20] R. C. G. Naber, B. D. Boer, and P. W. M. Blom, “Low-voltage polymer field-effect transistors for nonvolatile memories,” Appl. Phys. Lett., vol.87, p. 203509, 2005.

    [21] C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang,” High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator,” IEEE Electron. Device Lett., vol. 32, no. 1, 2011

    [22] K. H. Chen, W. C. Tzou, H. C. Yang, C. F. Yang and C. J. Cheng, “Switching properties of ba(zr0.1ti0.9)o3 ferroelectric films under various retention cycles for application in nonvolatile memory devices,” Ferroelectrics, vol. 385, pp. 62–68, 2009.

    [23] A. Dixit, S. B. Majumder, A. Savvinov, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Investigations on the sol–gel-derived barium zirconium titanate thin films,” Materials Letters, vol. 56, no. 6, pp. 933-940, , 2002.

    [24] J. Valasek, “Piezo-electric activity of rochelle salt under various conditions,” Phys. Rev., vol.19, pp. 478–491, 1922.

    [25] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science, vol. 306, no. 5698, pp. 1005-1009, 2004.

    [26] Y. P. Guo, K. Kakimoto, and H. Ohsato, “Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics,” Solid State Communications, vol. 129, no. 5, pp. 279-284, 2004.

    [27] P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review,” Journal of Micromechanics and Microengineering, vol. 10, no. 2, pp. 136-146, Jun, 2000.

    [28] I. D. Mayergoyz, Mathematical models of hysteresis 1991, Springer-Verlag, New York.

    [29] C. B. Sawyer, and C. H. Tower, “Rochelle salt as a dielectric,” Phys. Rev., vol.35, pp. 269, 1930.

    [30] T. Furukawa, “Ferroelectric properties of vinylidene fluoride copolymers,” Phase Transit, vol. 18, pp. 143-211, 1989.

    [31] Y. Oka, N. Koizumi, and Y. Murata, “Ferroelectric order and phase transition in polyutrifluoroethylene,” J. Polymer Sci. B, vol. 24, pp. 2059-72, 1986.

    [32] T. Yagi, M. Tatemoto, and J. Sako, “Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers,” Poly. J., vol. 12, pp. 209-223, 1980.

    [33] B. L. Farmer, A. J. Hopfinger, and J. B. Lando, “Polymorphism of poly(vinylidene fluoride): potential energy calculations of the effects of head-to-head units on the chain conformation and packing of poly(vinylidene fluoride),” J. Appl. Phys., vol. 43, pp. 4293-4303, 1972.

    [34] K. Koga and H. Ohigashi, “Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers,” J. Appl. Phys., vol. 59, pp. 2142-50, 1986.

    [35] T. Furukawa, G. E. Johnson, and H. E. Bair, “Ferroelectric phase transition in a copolymer of vinylidene fluoride and trifluoroethylene,” Ferroelectrics, vol. 32, pp. 61-67, 1981.

    [36] D. Gupta, M. Katiyar, and D. Gupta, “An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation,” Org. Electron., vol. 10, pp. 775–784, 2009.

    [37] W. S. Wong, and A. Salleo, “Flexible electronics: materials and applications,” Springer Science Business Media, 2009.

    [38] S. Nozaki, K. Ishida, A. Matsumoto, S. Horie, S. Kuwajima, H. Yamada, K. Matsushige, “Characterization of ferroelectric/metal interface under the repeated polarization switching,” Thin Solid Films, vol. 516, pp. 2450-2453, 2008

    [39] W. Choi, S. H. Noh, D. K. Hwang, J. M. Choi, S. Jang, Eugene Kim, and S. Im, “Pentacene-based low-leakage memory transistor with dielectric/electrolytic/dielectric polymer layers,” Electrochem. Solid-State Lett., vol.11(3), pp. H47-H50, 2008.

    [40] X. Lu, J. W. Yoon, and H. Ishiwara, “Low-voltage operation and excellent data retention characteristics of metal ferroelectric- insulator-Si devices based on organic ferroelectric films,” J. Appl. Phys., vol. 105, pp. 084101, 2009.

    [41] Z. G. Zeng, G. D. Zhu, L. Zhang and X. J. Yan, “Effect of crystallinity on polarization fatigue of ferroelectric P(VDF-TrFE) copolymer films,” Chinese. J. Polym. Sci., vol. 27, no. 4, pp. 479−485, 2009.

    [42] D. Mao, M. A. Quevedo-Lopez, H. Stiegler, B. E. Gnade, H. N. Alshareef, “Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics,” Org. Electron., vol. 11, pp. 925–932, 2010.

    [43] S. K. Hwang, I. Bae, R. H. Kim, and C. Park, “Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation,” Adv. Mater.,vol.24, pp.5910–5914, 2012.

    [44] A. Gerlach, S. Sellner, S. Kowarik, and F. Schreiber, "In-situ x-ray scattering studies of OFET interfaces" Phys. Stat. Sol. A, vol. 205, no. 3, pp. 461-474, 2008.

    [45] K. H. Lee, G. Lee, K. Lee, M. S. Oh, and S. Lim, “Flexible Low voltage nonvolatile memory transistors with pentacene channel and ferroelectric polymer,” Appl. Phys. Lett., vol. 94, p. 093304-1 – 093304- 3, 2009.

    [46] T. Sekitani, Y. Kato, S. Iba, H. Shinaoka and T. Someya,” Bending experiment on pentacene field-effect transistors on plastic films,” Appl. Phys. Lett., vol.86, p. 073511, 2005.

    [47] H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, S. G. Mhaisalkar, J. Kasim, Z. X. Shen, and F. R. Zhu, “Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors,” Appl. Phys. Lett., vol.93, p. 183503, 2008.

    [48] S. H. Noh, W. Choi, M. S. Oh, D. K. Hwang, K. Lee, and S. Im, “ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators,” Appl. Phys. Lett., vol.90, p. 253504, 2007.

    [49] S. R. Rajwade, K. Auluck, J. B. Phelps, K. G. Lyon, J. T. Shaw, and E. C. Kan, “A ferroelectric and charge hybrid nonvolatile memory part ii: experimental validation and analysis,” Electron Devices, IEEE Transactions on, vol. 59, no. 2, pp. 450-458, 2012.

    下載圖示 校內:2018-08-12公開
    校外:2018-08-12公開
    QR CODE