簡易檢索 / 詳目顯示

研究生: 溫承樺
Wen, Cheng-Hua
論文名稱: 利用濺鍍系統研製氧化銦鋅薄膜電晶體及其光電應用
Investigation of indium zinc oxide thin film transistors fabricated by sputtered system and their optoelectronic application
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 91
中文關鍵詞: 氧化銦鋅薄膜電晶體光電晶體光檢測器自組裝單層模
外文關鍵詞: IZO, Thin Film Transistor, Phototransistor, Photodetector, Self-assembled monolayer
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討利用濺鍍系統成長非晶氧化銦鋅之薄膜,並在製程中調整不同濃度的氧氣濃氣比例來得到不同特性之薄膜。在元件的部分,首先我們應用非晶氧化銦鋅薄膜做為主動層,並利用二氧化矽做為閘極介電層來製做薄膜電晶體,實驗結果得到最佳參數之薄模電晶體,其場效遷移率為8.71cm2/Vs,臨界電壓0 V,次臨界擺幅0.25 V/decade,6.8E4電流開關比。此外,我們發現不同的含氧量會對元件的光電特性造成影響,我們得到10%含氧量為最佳之參數結果。
    在實驗的第一部分,我們使用二氧化矽做為非晶氧化銦鋅薄膜電晶體的閘極介電層,在實驗第二部份我們使用多氮化矽對二氧化矽閘極介電層做了改善。在室溫下得到場效遷移率為13.67cm2/Vs,臨界電壓1.27V,次臨界擺0.261V/decade,1.57E6電流開關比。與一般的二氧化矽介電層比較,經由多氮化矽改善之介電層可以達到更高電流開關比,此外,我們也使用高介電常數的氧化鋁取代二氧化矽做為閘極介電層,在室溫下得到場效遷移率為34.15 cm2/Vs,臨界電壓2.51,次臨界擺幅0.2,7.46E6電流開關比。最後我們也對介電層的可靠度做探討。
    在非晶氧化銦鋅薄膜光電應用的部分,我們利用10%含氧量的非晶氧化銦鋅薄膜分別製作出光檢測器以及光電晶體並比較其優孰。在光檢測器部分,其在5V的偏壓下光暗電流比可達到 7.21E2,響應拒斥比達到 325。在光電晶體部分,其在-5V的偏壓下光暗電流比可達到2.54E4,響應拒斥比達到1.2E6, 其結果顯示光電晶體具有較良好的光電性。
    氧化銦鋅材料本身很容易形成氧空缺,對元件來說,會有一個漏電路徑,造成漏電流的上升。我們提出一個簡單的辦法來修飾氧化銦鋅表面的氧空缺, 利用自主装單層磨生長在氧化鋅銦光檢測器並鈍化之,經過 APTMS的修飾後, 我們發現光檢測器的漏電流下降了近一個準位且響應拒斥比從325提升到728。

    In this thesis, we use RF sputtering system to fabricate a-IZO thin film and vary the oxygen flow to obtain IZO thin films of different electrical characteristics. In terms of electrical device, we first fabricate the TFT applying the a-IZO thin film as active layer and SiO2 as gate dielectric layer. We obtain the optimized TFT having the mobility of 8.71 cm2/Vs, threshold voltage of 0V, subthreshold swing of 0.25 V/decade and Ion/Ioff ratio of 6.8×104. In addition, we find that the devices have different electrical characteristic with different oxygen ratio. And we obtain the optimized IZO thin film under 10% oxygen ratio.
    In the first part of the experiment, we fabricate the a-IZO thin film transistor using SiO2 as gate dielectric. In second part, we make an improvement on the SiO2 dielectric with SiN buffer layer. The TFT using SiN/SiO2 gate dielectric has the mobility of 13.67 cm2/Vs, threshold voltage of 1.27 V, subthreshold swing of 0.216 V/decade and Ion/Ioff ratio of 1.57E6 . Compared with normal SiO2 dielectric layer, we obtain higher Ion/Ioff ratio after impact SiN improvement. In addition, we also replace SiO2 with high κ material Al2O3 as gate dielectric. The Al2O3 TFT has the mobility of 34.15 cm2/Vs, threshold voltage of 2.51V, subthreshold swing of 0.2 V/decade and Ion/Ioff ratio of 7.36E6. At last, we also investigate the reliability of these dielectric
    In the part of a-IZO thin film photoelectrical application, we fabricate the IZO MSM photodetector and IZO thin film phototransistor with IZO thin film of 10% oxygen ratio. The photodetector has Ion/Ioff ratio of 7.21E2 and rejection ratio of 325 under 5V bias. The phototransistor has the Ion/Ioff ratio of 2.54E4, rejection ratio of 1.2E6 under -5V bias. The result indicates that the phototransistor has the better photoelectrical characteristic than photodetector.
    As we know, IZO is easy to form oxygen vacancy, which could yield a leakage current path for IZO device. Therefore, a simple surface treatment process is reported for improving its surface defects. We deposit 3-aminopropyltrimethoxysilane (APTMS) onto the IZO MSM photodetector to passivate its surface. After APTMS modification, the dark current of IZO phtodetector has decrease nearly an order and the rejection ratio increase from 325 to 728.

    摘要 I Abstract III 誌謝 V Content VI Table Captions X Figure Caption XI Introduction 1 1.1 Background and Motivation 1 1.2 Background of amorphous oxide semiconductor 2 1.3 Amorphous ZnO-based oxide semiconductor 4 1.3.1 Electronic structure of AOS 4 1.3.2 ZnO-based TCO thin films 5 1.4 Overview of High-κ Material 6 1.5 Overview of Ultraviolet phototransistors 7 1.6 Organization of this thesis 8 Reference 10 Chapter 2 Fabrication System and Important Parameters 19 2.1 Fabrication System 19 2.2 RF Sputtering System 19 2.2.1 Hall Measurement System 21 2.2.2 Energy-dispersive X-ray spectroscopy (EDS) 22 2.2.3 X-ray Diffraction Analysis (XRD) 23 2.2.4 Measurement Systems 24 2.3 Important Parameters 25 2.3.1 Field-Effect Mobility 25 2.3.2 Threshold Voltage (VT) 26 2.3.3 On/off current Ratio (Ion/off) 26 2.3.4 Subthreshold Swing (S.S) 26 Reference 32 Chapter 3 Investigating of IZO thin film and IZO thin film transistor 33 3.1 Introduction 33 3.2 Fabrication and investigation of IZO thin film 34 3.3 Analysis of IZO thin films 35 3.4 Fabrication of IZO thin film transistor with SiO2 dielectric insulator and optimized parameter 36 Reference 50 Chapter 4 IZO TFT with SiN/SiO2 and Al2O3 dielectric 54 4.1 Introduction 54 4.2 Fabrication of IZO TFTs with SiN/SiO2 double dielectric layers 55 4.3 Fabrication of IZO TFTs with Al2O3 dielectric layer 56 4.4 The current–voltage (I–V) characteristics of IZO TFT using SiN/SiO2 and Al2O3 dielectric layer 57 4.5 Investigation of time reliability of SiO2, SiN/SiO2 and Al2O3 TFTs 58 Reference 66 Chapter 5 Optoelectric application of IZO thin film and surface modulation by self-assembled monolayer 69 5.1 ZnO-based phototransistor and photodetector 69 5.1.1 Introduction 69 5.1.2 Fabrication of IZO MSM photodetector 70 5.1.3 Fabrication of IZO TFT UV phototransisitor 71 5.1.4 Output characteristic of IZO MSM photodetector 72 5.1.5 Output characteristic of IZO TFT UV phototransistor 72 5.1.6 Summary 75 5.2 Surface modulation on IZO photodetector with self-assembled monolayer 75 5.2.1 Introduction 75 5.2.2 Experimental process of SAM formation 76 5.2.3 discussion of APTMS-modified IZO MSM photodetector 77 Reference 86 Chapter 6 Conclusion and future work 88 6.1 Conclusion 88 6.2 Future work 90 6.2.1 IZO thin film 90 6.2.2 Device with self-assembled monolayer 90

    Chapter 1

    [1] T. Minami, H. Sato and H. Nanto, “Group Ⅲ Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering,” Japanese Journal of Applied Physics, vol. 24, pp. L781-L784, 1985.
    [2] J. H. Park, K. J. Ahn, K. I. Park, S. I. Na and H. K. Kim, “An Al-doped ZnO electrode grown by highly efficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics ,” Journal of Physics D: Applied Physics, Vol. 43, pp. 115101-115107, 2010.
    [3] H. Enoki, T. Nakayama, J. Echigoya, “The Electrical and Optical Properties of t he ZnO2SnO2 Thin Films Prepared by RF Mag2 net ron Sputtering,” Physica Status Solid A, vol. A129 . pp. 181-191, 1992.
    [4] H. Un'no, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto and H. Kawazoe, “Preparation of MgIn2O4 thin films on glass substrate by RF-sputtering”, Japanese Journal of Applied Physics, vol. 32, pp. L1260-1262, 1993.
    [5] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Highly transparent and conductive Zn2In2O5 thin films prepared by rf magnetron sputtering,” Japanese Journal of Applied Physics, vol.34, pp. L971-974, 1995.
    [6] T. Minami, Y. Takeda, S. Takata, T. Kakumu, “Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering,” Thin Solid Films, vol. 13, pp. 308-309, 1997.
    [7] T. Minami, “Present Status of Transparent Conducting Oxide Thin-Film Development for Indium-Tin-Oxide (ITO) Substitutes”, Thin Solid Films, Vol. 516, pp. 5822-5828, 2008.
    [8] Y. Shigesato, D. C. Paine, and T. E. Haynes: Adv. Mater. (Weinheim, Ger.) 4, pp. 503,1994.
    [9] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. Marks: Adv. Mater. (Weinheim, Ger.) 13, pp. 1476, 2001.
    [10] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Applied Physics Letters, vol.68, p.2699-2701, 1996.
    [11] D.H Kim, M.R. Park, H.J. Lee and G.H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering”, Applied Surface Science, vol.253, pp.409-411, 2006.
    [12] H. K. Kim, J. H. Bae, J. M. Moon, S. W. Kim, S. W. Jeong, D. G. Kim, and J. W. Kang, “Characteristics of Amorphous Indium Zinc Oxide Anode Films on Polycarbonate Substrate for Flexible Organic Light Emitting Diode,” Solid State Phenomena, vol. 399, pp. 124-126, 2007.
    [13] J. H. Bae, J. M. Moon, J. W. Kang, H. D. Park, J. J. Kim, W. J. Cho, and H. K. Kim, “Transparent, Low Resistance, and Flexible Amorphous ZnO-Doped In2O3 Anode Grown on a PES Substrate,” Journal of The Electrochemical Society, vol. 154, pp. J81-J85, 2007.
    [14] C. W. Ow-Yang, H. Y. Yeom, D. C. Paine, ”Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering,” Thin Solid Films, vol. 516, pp. 3105-3111, 2008.
    [15] D. S. Liu, C. S. Sheu, C. T. Lee, and C. H. Lin, “Thermal Stability of Indium Tin Oxide Thin Films Co-sputtered with Zinc Oxide,” Thin Solid Films, vol. 516, pp.3196-3203, 2008.
    [16] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269-1271, 2003.
    [17] N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009.
    [18] W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-κ HfLaO hybrid gate dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
    [19] D. A. Mourey, D. A. Zhao, and T. N. Jackson, “Selfaligned-gate ZnO TFT circuits,” IEEE Electron Dev. Lett., vol. 31, pp. 326-328, 2010.
    [20] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, pp. 1516–1522, 2008.
    [21] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, “High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
    [22] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, “Thin-filmtransistors with transparent amorphous zinc indium tin oxide channel layer,” J. Phys. D: Appl. Phys., vol. 40, pp. 1335–1338, 2007.
    [23] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-7275, 2001.
    [24] K. Nomura, A. Takag, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Japanese Journal of Applied Physics, Vol. 45, pp. 4303–4308, 2006.
    [25] H. Hosono, N. Kikuchi, N. Ueda and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples.” Journal of Non-Crystalline Solids, vol.198–200, pp. 165–169, 1996.
    [26] M. Orita, H. Ohta and M. Hirano, “Amorphous transparent conductive oxide”, Philosophical Magazine, vol.81, pp. 501-515, 2001.
    [27] N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences.” Advances in Physics, vol. 26, pp. 363–391, 1977.
    [28] M. Orita and M. Hirano, “Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdO•GeO2.” Physical Review B, vol. 66, 35203, 2002.
    [29] K.Varghese, M. Paulose, C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nature Nanotechnology, vol. 4, 592-597, 2009.
    [30] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials , vol. 4, pp. 455-459, 2005.
    [31] Chopra K. L., Major S. and Pandya D. K., “Transparent conductors—A status review,” Thin Solid Films, vol. 102,pp. 1-46, 1983.
    [32] B.Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, “Post-annealing of Al-doped ZnO films in hydrogen atmosphere,” Journal of Crystal Growth, vol.281, pp. 475–480, 2005.
    [33] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo and S. Niki, “ ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications,” Thin Solid Films, vol.431-432, pp. 369-372 ,2003.
    [34] M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, and M.P. Taylor, “Titanium-doped indium oxide: A high-mobility transparent conductor,” Applied Physics Letters, vol. 87, pp. 032111, 2005.
    [35] H. M. Ali, H. A. Mohamed, and S. H. Mohamed, Eur, “Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique,” Journal of Applied Physics, vol. 31, pp. 87-93, 2005.
    [36] H. Yue1, A. Wu, J. Hu, X. Zhang, T. Li, “Relationship between structure and functional properties of the ZnO:Al thin films,” Materials Science Forum, Vols. 675-677, pp 1275-1278, 2011.
    [37] S. S. Lin, J. L. Huang, P. Sajgalik, “The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere,” Surface and Coatings Technology, vol.185, pp. 254–263, 2000.
    [38] J. H. Lee, S. Y. Lee, B. O. Park, “Fabrication and characteristics of transparent conducting In2O3–ZnO thin films by ultrasonic spray pyrolysis,” Materials Science and Engineering B, vol. 127, pp. 267–271, 2006.
    [39] R. AlAsmar, S. Juillaguet, M. Ramonda, A. Giani, P. Combette, A. Khoury, A. Foucaran, “Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique,” Journal of Crystal Growth, vol. 275, pp. 512–520, 2005.
    [40] Y. Zhang, J. He, Z. Ye, L. Zhou, J. Huang, L. Zhu, B. Zhao, “Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition,” Thin Solid Films, vol. 458 ,pp. 161–164, 2004.
    [41] S. T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, “Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor,” Sensors and Actuators B, vol. 107, pp. 379–386, 2005.
    [42] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, ‘‘Properties of Transparent Conductive ZnO Al Films Prepared by Co-Sputtering,’’ Journal of Crystal Growth, vol. 274, pp. 453–457, 2005.
    [43] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-7275, 2001.
    [44] S. H. Kim, S. E. Kim, J. H. Park, S. H. Kim and M. S. Kim, ”A complementary method to determine the effective flow resistivity of flat ground states,” J. Korean Phys. Soc., vol. 43, pp. 868-874, 2003.
    [45] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Elec. Dev. Lett., vol. 21, pp. 181-183, 2000.
    [46] B. H. Lee, L. Kang, R. Nieh, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett., vol. 76, pp. 1926-1928, 2000.
    [47] M. A. Quevedo-Lopez, M. El-Bouanani, B. E. Gnade, R. M. Wallace, M. R. Visokay, M. Douglas, M. J. Bevan, and L. Colombo, “Interdiffusion studies for HfSi[sub x]O[sub y] and ZrSi[sub x]O[sub y] on Si,” J. Appl. Phys., vol. 92, pp. 3540-3550, 2002.
    [48] K. S. Hwang, Y. S. Jeon, S. B. Kim, C. K. Kim and J. S. Oh, “Ca-Doped ZrO 2 Thin Films Deposited by Using the Spin-Coating Pyrolysis Process with a Metal Naphthenate Precursor,” J. Korean Phys Soc., vol. 43, pp. 754, 2003.
    [49] H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D. L. Kwong, C. H. Tung, J. S. Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H. Ang, J. Z. Zheng, and S. Ramanathan, “Thermal stability of (HfO[sub2])[subx] (Al[sub2]O[sub3])[sub1-x] on Si,” Appl. Phys. Lett., vol. 81, pp. 3618-3620, 2002.
    [50] H. H. Zhang, C. Y. Ma, and Q. Y. Zhang, “Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering,” Vacuum, vol. 83, pp. 1311-1316, 2009.
    [51] Campbell J C 1985 Semiconductors and Semimetal vol. 22D, ed W T Tsang (New York: Academic) Star, Y. Lu, K. Bradley, and G. Gruner, “Nanotube optoelectronic memory devices,” Nano Lett., vol. 4, pp.1587, 2004.
    [52] Y. Huang, and R. I. Hornsey, “Nitride-based LEDs with p-InGaN capping layer,” IEEE Trans. Elec. Dev., vol. 50, pp. 2570, 2003.
    [53] G. Chaji, A. Nathan, and Q. Pankhurst, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging,” Appl. Phys. Lett., vol. 93, pp. 203504, 2008.
    [54] N. M. Johnson, and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett., vol. 45, pp. 1102, 1984.
    [55] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., vol. 56 pp. 650, 1990.C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009.
    [56] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009

    Chapter 2

    [1] J. L. Vossen and W. Kern, Thin Flim Processes, Academic Press, New York, pp. 131, 1978.
    [2] C. Y. Chang and S. M. Sze, “ULSI Technology,” McGraw-Hill, New York, pp. 380, 1996.
    [3] S. I. Shah, “Handbook of Thin Film Process Technology,” Institute of Physics Pub, Bristol, UK, pp. A3.0:1, 1995.
    [4] Joseph Goldstein ”Scanning Electron Microscopy and X-Ray Microanalysis,” Canada, 2003
    [5] B.D. Cullity, “Elements of X-ray diffraction, 2nd ed,” Addison Wesley, 1978.
    [6] Donald A. Neamen, “Semiconductor physics and devices: basic principles-3rd ed.,” McGraw-Hill, New York, 2003

    Chapter 3

    [1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, ”Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269, 2003.
    [2] N. C. Su, S. J. Wang, and A. Chin, ”High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009.
    [3] W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, ”Low-Voltage High-Performance Pentacene Thin-Film Transistors With Ultrathin PVP/High-kappa HfLaO Hybrid Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
    [4] B. Du Ahn, H. S. Shin, G. H. Kim, J. S. Park, and H. J. Kim, “A novel amorphous InGaZnO thin film transistor structure without source/drain layer deposition,” Japanese Journal of Applied Physics, vol. 48, no. 3, Article ID 03B019, 2009.
    [5] Y. K. Moon, S. Lee, W. S. Kim et al., “Improvement in the bias stability of amorphous indium gallium zinc oxide thinfilm transistors using an O2 plasma-treated insulator,” Applied Physics Letters, vol. 95, no. 1, Article ID 013507, 2009.
    [6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, 2004.
    [7] E.M. C. Fortunato, P.M. C. Barquinha, A. C.M. B. G. Pimentel et al., “Fully transparent ZnO thin-film transistor produced at room temperature,” Advanced Materials, vol. 17, no. 5, pp. 590–594, 2005.
    [8] J. S. Park, K. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, “Novel ZrInZnO thin-film transistor with excellent stability,” Advanced Materials, vol. 21, no. 3, pp. 329–333, 2009.
    [9] J. M. Lee, I. T. Cho, J. H. Lee, W. S. Cheong, C. S. Hwang, and H. I. Kwon, “Comparative study of electrical instabilities in top-gate InGaZnO thin film transistors with Al2O3 and Al2O3/SiNx gate dielectrics,” Applied Physics Letters, vol. 94, no. 22, Article ID 222112, 3 pages, 2009.
    [10] W. Lim, E. A. Douglas, S. H. Kim et al., “High mobility InGaZnO4 thin-film transistors on paper,” Applied Physics Letters, vol. 94, no. 7, Article ID 072103, 3 pages, 2009.
    [11] J. S. Park, T. W. Kim, D. Stryakhilev et al., “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thinfilm transistors,” Applied Physics Letters, vol. 95, no. 1, Article ID 013503, 3 pages, 2009.
    [12] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, ”Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, pp. 1516–1522, 2008.
    [13] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, ”High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
    [14] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, ”Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” Appl. Phys Lett., vol. 40, 2007.
    [15] T. Minami, H. Sonohara, T. Kakumu, and S. Takata,” Highly Transparent and Conductive Zn2In2O5 Thin Films Prepared by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., Part 2,vol 34, 1995.
    [16] J. M. Phillips, ”A Highly-Conducting Transparent Conductor: Zinc Indium Tin Oxide,” Appl. Phys. Lett. 67, pp. 2246, 1995.
    [17] H. Takatsuji, T. Hiromori, K. Tsujimoto, S. Tsuji, K. Kuroda, and H. Saka, “Characterization of Transparent Conductors in Indium Zinc Oxide and Their Application to Thin-Film Transistor Liquid-Crystal Displays,” Mater. Res. Soc. Symp. Proc. 508, 315, 1998.
    [18] Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon, “Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film,” Thin Solid Films 445, 63, 2003.
    [19] T. Sasabayashi, N. Ito, E. Nishimura, M. Kon, P. K. Song, K. Utsumi, A. Kaijo, and Y. Shigesato,”Comparative study on structure and internal stress in tin-doped indium oxide and indium-zinc oxide films deposited by R.F. magnetron sputtering,” Thin Solid Films 445, 219, 2003.
    [20] T. Ashida, A. Miyamura, and Y. Sato, “Effect of electrical properties on thermal diffusivity of amorphous IZO films,”J. Vac. Sci. Technol., A, Vol. 25, No. 4, Jul/Aug, 2007
    [21] Cheong, W. S.; Bak, J. Y.; and Kim, H. S, “Transparent Flexible Zinc–Indium–Tin Oxide Thin-Film Transistors Fabricated on Polyarylate Films,” Jpn. J. Appl. Phys., 05EB10-05EB10-4M, 2010.

    Chapter 4

    [1] N. Kumar, A. Dorfman, and J. Hahm, “Fabrication of optically enhanced ZnO nanorods and micro rods using novel biocatalysts,” J. Nanosci Nanotechnol, 11, pp. 1915-8, 2005.
    [2] M. A. L. Johnson, S. Fujita, W. H. Rowland, Jr., W. C. Hughes, J. W. Cook, Jr., and J. F. Schetzina, J. Electron. Mater., 25, 855, 1996.
    [3] R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M.G. Spencer, Y.X. Li, Salamanca-Riba, L.G, Iliadis, A.A. and K.A. Jones, “Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices,” Appl. Phys. Lett. 348, 1998.
    [4] H.J. Ko, Y.F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., 537, 2000.
    [5] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films, 205, 2005.
    [6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Nature (London), 488, 2004.
    [7] N.L. Dehuff, E.S. Kettenring, D.Hong, H. Q. Chiang, J. F. Wager, R.L. Hoffman, C.H. Park, and D.A. Keszler, “Role of order and disorder on electronic performance of oxide thin film transistors,” J. Appl. Phys. 97, 2005.
    [8] H. S. Bae, J. H. Kim, and S. Im, “High Mobility Enhancement in ZnO-Based TFTs by H Treatment,” Electrochem. Solid-State Lett., 7, G279, 2004.
    [9] J. Jo, O. Seo, E. Jeong, H. Seo, B. Lee, and Y. I. Choi, “Effect of Hydrogen in Zinc Oxide Thin-Film Transistor Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., 46, 2493, 2007.
    [10] C. A. Wolden, T. Barnes, J. B. Baxter, and E. S. Aydil, J, “Infrared detection of hydrogen-generated free carriers in polycrystalline ZnO thin films,” Appl. Phys., 97, 043522, 2005.
    [11] H. S. Bae and S. Im, “ZnO-based thin-film transistors of optimal device performance,” J. Vac. Sci. Technol. B, 22, 1191, 2004.
    [12] X.H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, B. Kippelen, “High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD),” Organic Electronics 8, pp. 718–726, 2007.
    [13] C. C. Cheng, C. H. Chien, G. L. Luo, J. C. Liu, C. C. Kei, D. R. Liu, C. N. Hsiao, C. H. Yang, and C. Y. Chang, “Characteristics of Atomic-Layer-Deposited Al2O3 High-k Dielectric Films Grown on Ge Substrates,” J. Electrochem. Soc. 155(10), G203-G208, 2008
    [14] D. C. Suh, Y. D. Cho, S. W. Kim, D-H. Ko, Y. Lee, M-H. Cho, and J. Oh, “Improved thermal stability of Al2O3/HfO2/Al2O3 high-k gate dielectric stack on GaAs”, Appl. Phys. Lett., Vol. 96, pp. 142112-4, 2010.
    [15] J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. K. Park, W.-S. Cheong, M. Ryu, C.-W. Byun, J.-I. Lee, and H. Y. Chu, ETRI J. 31, 62, 2009.
    [16] T.-C. Fung, C-.S. Chuang, K. Nomura, H.-P. D. Shieh, H. Hosono, and J. Kanicki, J. Information Display 9, 21, 2008.
    [17] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, Jpn. J. Appl. Phys. 48, 010203, 2009.
    [18] K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 95, 013502, 2009.
    [19] M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95, 063502, 2009.
    [20] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 193504, 2007.
    [21] J.-M. Lee, I.-T. Cho, J.-H. Lee, W.-S. Cheong, C.-S. Hwang, and H.-I. Kwon, Appl. Phys. Lett. 94, 222112 (2009).
    [22] Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502, 2008.

    Chapter 5

    [1] Y.H.Leung,Z.B.He,L.B.Luo,C.H.A.Tsang,N.B.Wong,W.J.Zhang,andS. T. Lee, “ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector,” Appl. Phys. Lett., vol. 96, no. 5, pp. 053102, 2010.
    [2] F. Sun, C. X. Shan, S. P. Wang, B. H. Li, Z. Z. Zhang, C. L. Yang, and D. Z. Shen, “Ultraviolet photodetectors fabricated from ZnO p-i-n homojunction structures,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 27-29, 2011.
    [3] J. Kim, J. H. Yun, C. H. Kim, Y. C. Park, J. Y. Woo, J. Park, J. H. Lee, J. Yi, and C. S. Han, “ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect,” Nanotechnology, vol. 21, no. 11, pp. 115205, 2010.
    [4] L. Qin, C. Shing, and S. Sawyer, “Metal-semiconductor-metal ultraviolet photodetectors based on zinc-oxide colloidal nanoparticles,” IEEE Electron Device Letters, vol. 32, no. 1, pp. 51-53, 2011.
    [5] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” Journal of Applied Physics, vol. 79, no. 10, pp. 7433-7473, 1996.
    [6] T. Yen, J. Yun, S. J. Kim, A. Cartwright, and W. A. Anderson, “Photocurrent enhancement in nanocrystalline-ZnO/Si heterojunction metal-semiconductor-metal photodetectors,” Electrochemical and Solid-State Letters, vol. 14, no. 10, pp. H415-H418, 2011.
    [7] D. Li, X. Sun, H. Song, Z. Li, Y. Chen, G. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett., vol. 98, no. 1, pp. 011108, 2011.
    [8] M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quan. Electron., Vol. 10, pp. 840-848, 2004.
    [9] M. C. Hamilton. S. Martin and J. Kanicki, “Thin-film organic polymer phototransistors,” IEEE Tran. Electron. Dev., vol. 51, pp. 877-885, 2004.
    [10] H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors,” Appl. Phys. Lett., vol. 83, pp. 5313-5315, 2003
    [11] W. K. Hong, B. J. Kim, T. W. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E.A. Stach, and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 313, pp. 378-382, 2008.
    [12] M. A. Aziz, M. Oyama, and I. V. Kityk, “Pump-probe third harmonic generation kinetics of gold nanoparticle-attached aluminum-doped zinc oxide substrate,” Materials Letters, vol. 74, pp. 226-228, 2012.
    [13] T. W. Zeng, I. S. Liu,K.T.Huang, H. C. Liao, C. T. Chien, D. K. P. Wong, C.W. Chen, J. J. Wu, Y. F. Chen, and W. F. Su, “Effects of bifunctional linker on the optical properties of ZnO nanocolumn-linker-CdSe quantum dots heterostructure,” Journal of Colloid and Interface Science, vol. 358, no. 2, pp. 323-328, 2011.
    [14] T. P. Chen, K.H. Lee, S.P. Chang, S. J. Chang, P. C. Chang, “Effect of surface modification by self-assembled monolayer on the ZnO film ultraviolet sensor,” Appl. Phys. Lett. 103, 022101, 2013

    無法下載圖示 校內:2019-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE