簡易檢索 / 詳目顯示

研究生: 涂賢凱
Tu, Xian-Kay
論文名稱: 植物發電與 IoT 應用整合
Integration of Plant Electricity with IoT Applications
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 56
中文關鍵詞: 植物發電IoT無線傳輸LoRa自動化管理
外文關鍵詞: Plant electricity, Internet of Thing (IoT), Wireless, LoRa, Automated management
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣有將近六成的土地被森林覆蓋且孕育著豐富而高價值的樹種,截至目前仍無有效的 方法來管理這些森林,僅能仰賴耗時的傳統人力進行巡山。隨著時代變遷,可藉由無線傳輸 以及自動化管理來取代傳統人力巡檢,以降低人力耗損及提高效率。雖然市面上已有許多自 動化無線傳輸方式,但是電源供給仍是關鍵,倘若採用一般的能源裝置 (如太陽能、風力發 電、乾電池)則會在森林中埋入太多人工裝置,影響大自然環境,且會增加後期維運成本、提 高管理困難度。
    基於以上觀點,本研究係利用植物本身行光合作用所產生的多餘養分排放至土壤,土壤
    內微生物分解這些養分產生微小電荷,形成植物發電的現象。若能將這些電荷收集再利用,建構一自給自足電源供給來源,並利用此能源設計一套低耗能且遠距離傳輸的無線裝置,則可達到森林自動化管理的目的。
    本研究中長期監測植物發電的電壓曲線,掌握植物發電的特性,並設計充電電路,捕捉 植物產生的微小電荷 (約 0.7 v ~0.8 v) 後再加利用,成功驅動 LoRa 無線模組完成設備之間的 溝通,且傳輸距離可達 5 公里遠。從本研究結果顯示,驗證植物發電實現 IoT 應用發展的可 能性。

    Nearly 60% of Taiwan's land is covered by forests, which are rich in high-value tree species. Up to now, there is still no effective way to manage these forests by only relying on traditional manpower for patrol. With the advances of Internet of Things (IoTs), it is possible to replace traditional human inspections by sensors and wireless transmission to automate effective forest management. Although there are many automated wireless transmission methods on the market, the power supply is still the key. If general energy devices (such as solar energy, wind power, batteries) were used, too many artificial devices will be implemented in the forest, leading to an unfavorable natural environment. In addition, the cost of maintenance and operation in the later stage are also undesirable. Thus, the possibility of using plant electricity from photosynthesis is explored in this study.
    The plants discharge nutrients to the soil which are then decomposed by the microbes in the soil to generate small electricity. In this study, these charges are collected by super capacitors to provide power for signal transmission through the wireless communication module LoRa. With a low power consumption design, the distance transmitted can be up to 4 km. That is, the possibility of using plant power for forest management through proper communication links of IoTs is verified and successfully implemented and demonstrated in this study. Thus, the goal of forest management automation could be accomplished.

    中文摘要 I Extended Abstract II 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章緒論 1 1.1 研究動機 1 1.2 研究方法與目的 1 1.3 研究架構 2 第二章文獻探討與驗證 4 2.1 植物發電 4 2.1.1 植物發電原理 4 2.1.2 植物發電驗證 5 2.2 儲能設備選用與充電電路設計 10 2.2.1 儲能設備選用 10 2.2.2 充電電路設計 12 2.3 驗證植物可對電容正常充電 16 2.4 實現植物發電照明應用 16 2.4.1 生活實際應用 16 2.5 設計電路 18 2.5.1 實際應用之成果展現 20 2.5.2 植物發電實現IoT應用 23 第三章系統整合開發與實作 24 3.1 無線傳輸選用 24 3.1.1 LPWAN LoRa 新一代無線技術傳輸 24 3.1.2 硬體介紹-LoRa模組 26 3.1.3 硬體介紹-微控制器(Microcontroller Unit, MCU) 27 3.1.4 硬體介紹-Scheme Of LoRa system 28 3.1.5 程式介紹-Flow Chart (一般模式) 29 3.1.6 程式介紹-Programming(一般模式) 31 3.1.7 戶外實測 34 3.1.8 植物與LoRa結合 36 3.2 程式精進 37 3.2.1 程式精-Flow Chart (省電模式) 37 3.2.2 程式精進-Programming (省電模式) 40 3.3 實現植物發電驅動LoRa應用成果 42 3.4 實現植物發電整合IoT多元應用發展 44 3.5 持續深化再精進 48 第四章結論與展望 50 4.1 結論 50 4.2 展望 52 參考文獻 53

    參考文獻
    1. 邱立文;黃群修;吳俊奇;謝小恬, 第 4 次全國森林資源調查成果概要 - 林務局. 2015.08. Vol.41 No.4: pp. 7-13.
    2. 行政院農業委員會林務局, 林業統計 Forestry Statistics. 2021. p. 196.
    3. Strik, D.P., H. Hamelers, J.F. Snel and C.J. Buisman, Green electricity production with
    living plants and bacteria in a fuel cell. International Journal of Energy Research, 2008.
    32(9): pp. 872-876.
    4. 沈義文, 植物發電研究, in 工程科學系. 2012, 國立成功大學.
    5. 林原璋, 植能城市-藉由植物發電所形成的共享域, in 建築系. 2019, 國立成功大學.
    6. Choo, Y.Y. and J. Dayou, A Method to Harvest Electrical Energy from Living Plants.
    Journal of Science and Technology, 2013. 5: pp. 79-88.
    7. Surugau, N., Y.Y. Choo and J. Dayou, Origin of weak electrical energy production from
    living-plants. International Journal of Renewable Energy Research, 2014. 4(1): pp. 198-203.
    8. 陳俊位, 高德錚 and 蔡宜峰, 不同栽培介質的微生物相變化初步研究 / Preliminary
    Studies on the Microflora Population Dynamics in Different Culture Media. 臺中區農業改
    良場研究彙報, 2002(75): p. 21.
    9. Sefram Model DAS50. Available from: https://www.sefram.com.
    10. sefram datasheet. Available from: https://www.sefram.com.
    11. Raza, W., F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood and E.E.
    Kwon, Recent advancements in supercapacitor technology. Nano Energy, 2018. 52: pp.
    441-473.
    12. Xia, F., S. Xu, S. Li and X. Wang, On-Chip High-Power Supply Unit: Micro
    Supercapacitor With Superb Capacitance Density and Fast Charge/Discharge Ability. IEEE Electron Device Letters, Electron Device Letters, IEEE, IEEE Electron Device Lett., 2021. 42(4): pp. 625-627.13. Torabi, F. and P. Ahmadi, Simulation of Battery Systems. 2019: pp. 22-33.
    14. Bhat, T.S., P.S. Patil and R.B. Rakhi, Recent trends in electrolytes for supercapacitors.Journal of Energy Storage, 2022. 50: pp. 1-7.
    15. Sharma, P. and T. Bhatti, A review on electrochemical double-layer capacitors. Energy
    conversion and management, 2010. 51(12): pp. 1-12.53
    16. 超級電容與一般電池效率比較. Available from: https://circuitdigest.com/tutorial/supercapacitor-vs-battery-comparison-and-case-study.
    17. Team, L. What is RC Circuit? Formula, Equitation & Diagram. August 24, 2021; Available from: https://www.linquip.com/blog/what-is-rc-circuit/.
    18. Pulé, S., Students' versatility with resistor-capacitor circuits. International Journal of Electrical Engineering Education, 2012. 49(4): pp. 419-443.
    19. RC 充電與放電曲線圖. Available from: https://www.electronics-tutorials.ws/rc/rc_1.html.
    20. Kinget, P., C. Vezyrtzis, E. Chiang, B. Hung and T. Li. Voltage references for ultra-low
    supply voltages. in 2008 IEEE Custom Integrated Circuits Conference. 2008. IEEE.
    21. Pitale, S., M. Ghosh, S.G. Singh, H. Manasawala, G.D. Patra and S. Sen, Characteristics of
    Al/Ge Schottky and ohmic contacts at low temperatures. Materials Science in
    Semiconductor Processing, 2021. 130: pp. 1-3.
    22. DIODES datasheet. Available from:
    https://www.diodes.com/assets/Datasheets/ds30444.pdf.
    23. Manso, M. and J. Castro-Gomes, Green wall systems: A review of their characteristics.
    Renewable and Sustainable energy reviews, 2015. 41: pp. 863-871.
    24. Capacitors in Series and Parallel. Available from:
    https://courses.lumenlearning.com/suny-physics/chapter/19-6-capacitors-in-series-and-parall
    el/.
    25. 3PDT Stomp Switch Instructions. Available from:
    https://www.stewmac.com/video-and-ideas/online-resources/learn-about-guitar-pickups-and
    -electronics-and-wiring/3pdt-stomp-switch-instructions/.
    26. CDA supercapacitor datasheet. Available from:
    http://en.cda-cap.com/userfiles/2020513191844195.pdf.
    27. Want, R., An introduction to RFID technology. IEEE pervasive computing, 2006. 5(1): pp.
    25-33.
    28. Nur-A-Alam, M. Ahsan, M.A. Based, J. Haider and E.M.G. Rodrigues, Smart Monitoring
    and Controlling of Appliances Using LoRa Based IoT System. Designs, 2021. 5(1): p. 17.
    29. Devalal, S. and A. Karthikeyan. LoRa Technology - An Overview. in 2018 Second
    International Conference on Electronics, Communication and Aerospace Technology
    (ICECA). 2018.
    30. The Things Network. Available from:
    https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/.
    31. WikiData. ALOHAnet. Available from: https://zh.wikipedia.org/zh-hk/ALOHAnet.
    54

    32. 吳柏穎, 運用 LoRa 技術實現 IoT 平台之開發 / Development of LoRa-based IoT platform, in 電子工程學系. 2017, 義守大學. pp. 17-20.
    33. El-Aasser, M., R. Badawi, M. Ashour and T. Elshabrawy. Examining Carrier Sense Multiple Access to Enhance LoRa IoT Network Performance for Smart City Applications. in 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). 2019. IEEE.
    34. Lavric, A. and V. Popa. LoRaTM wide-area networks from an Internet of Things perspective. in 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). 2017. IEEE.
    35. Gullipalli, R. and K.K. Golla, Arduino-Based Radio Technology System for Bird Protection: Wind Farm Application Approach, in Department of Mathematics and Natural Sciences Blekinge Institute of Technology. 2020. pp. 32-48.
    36. LoRa module schematic outlook. Available from: https://reyax.com/products/rylr896/.
    37. REYAX website datasheet. Available from:
    https://reyax.com//upload/products_download/download_file/RYLR896_EN.pdf.
    38. Nano, A., Arduino Nano. A MOBICON Company, 2018: pp. 1-5.
    39. Ge, Z., S. Zhang, J. Xie, Z. Tang and S. Dubljevic. Development of a swimming robot for
    pipeline leak detection. in 2020 American Control Conference (ACC). 2020. IEEE.
    40. Arduino web site. Available from: https://docs.arduino.cc/hardware/nano.
    41. DFrobot website. Available from:
    https://wiki.dfrobot.com/DFRobot_CurieNano_-_A_mini_Genuino_Arduino_101_Board_S
    KU__DFR0453.
    42. Chakravarty, S. and A. Hopkins. LoRa mesh network with BeagleBone Black. in 2020
    Fourth World Conference on Smart Trends in Systems, Security and Sustainability
    (WorldS4). 2020. IEEE.
    43. Gouveia, F., R. Campos-Rebelo and F. Moutinho. Reconfigurable Sensor Node Applied to
    LoRa Networks. in APCA International Conference on Automatic Control and Soft
    Computing. 2022. Springer.
    44. Ding, X., J. Huang, S. Hu, J. Zhou and C. Lu. Research on distributed agricultural
    environment monitoring system based on LoRa technology. in 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). 2022. IEEE.55
    45. Quispetupa, D.A., J.P. Fernandez and R.Q. Tacas. An experimental evaluation of RSSI-LoRa in an olive tree plantations. in 2022 IEEE Engineering International Research Conference (EIRCON). 2022. IEEE.

    無法下載圖示 校內:2028-01-17公開
    校外:2028-01-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE