簡易檢索 / 詳目顯示

研究生: 畢華侖
Pi, Hua-Lun
論文名稱: 於下行多點協調系統中的動態群集之設計與建模
Dynamic Clustering Design and Modeling for Downlink Coordinated Multipoint Transmission
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 66
中文關鍵詞: 多點協調聯合傳輸蜂巢式網路動態群集隨機幾何
外文關鍵詞: Coordinated multipoint, joint transmission, cellular networks, dynamic clustering, stochastic geometry
相關次數: 點閱:127下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多細胞網路中,用戶深受嚴重的細胞間干擾所影響,因此多點協調技術被提出來解決此問題,透過多個基地台之間的協調來減緩細胞間干擾。在多點協調的眾多技術中,聯合傳輸顯得尤為突出,其核心概念是將干擾轉換成有用的訊號,並由多個基地台同時服務同個用戶,此時聯合傳輸的基地台群集大幅影響系統效能,雖然目前關於多點協調技術已有了相當程度的研究,但組成基地台群集的方式,仍然缺乏具理論基礎的結論。在本篇論文中,我們提出了兩種動態群集設計,並在聯合傳輸場景下評估他們的效能,根據接收訊號的不同,我們考量三種聯合傳輸場景,第一種是非同調聯合傳輸,多個基地台發射同個訊號給某一用戶,但這些訊號間彼此存在著相位差。第二種是同調聯合傳輸,用戶收到多個來自不同基地台的相同訊號,而且這些訊號間不存在相位差。最後一種是多天線的聯合傳輸,我們將同調聯合傳輸延伸到多天線系統中,並在基地台端應用了最大比例傳輸之預編碼,來提高系統的效能。為分析並評估我們所提出的群集方法的效能,我們利用隨機幾何的技術分析使用者的連線品質和吞吐量的理論值,最後我們以模擬結果驗證理論值,並與現有的群集方法進行效能比較。

    In the multicell networks, user equipments (UEs) suffer from severe inter-cell interference (ICI). Coordinated multipoint (CoMP) technique has been proposed to mitigate ICI by coordinating multiple base stations (BS) to serve UEs. Among numerous implementation choices of CoMP, joint transmission (JT) is attractive because multiple BSs transmit the same signal through coordination that transfers interfering signals into useful ones. Although CoMP has been extensively studied, how to cluster the BSs for JT is critical to system performance but an effective clustering remains open. In this thesis, we investigate the performance of CoMP-JT and proposed two dynamic clustering methods, namely restricted strongest clustering (RSC) and dependent threshold clustering (DTC). Based on the differences in the signal models, we divide JT into three scenarios and discuss them separately. The first scenario is non-coherent JT,
    where the UEs receive the same signal from multiple BSs but with different phases. The second scenario is coherent JT. In contrast to non-coherent JT, the UEs receive the same signal from multiple BSs with the same phase in coherent JT. The last scenario is multi-antenna JT. We extent the coherent JT to the multi-antenna system and the maximum ratio transmission (MRT) precoding is applied in the BS site. To evaluate the performance of the two proposed clustering methods, we derive the user rate and coverage probability by using the tools from stochastic geometry. Simulation results
    are presented to verify the accuracy of the theoretical analysis and demonstrate the performance improvement of our proposed clustering methods over conventional ones.

    Chinese Abstract i Abstract ii Acknowledgement iv Table of Contents v List of Tables viii List of Figures ix List of Symbols xi List of Acronyms xii 1 Introduction 1 1.1 Motivation and Contribution 1 1.2 Thesis Structure 2 1.3 Background 2 1.3.1 Coordinated Multipoint 3 1.3.2 BS Clustering 4 2 Related Work 7 3 System Model and Proposed Work 9 3.1 System Model 9 3.1.1 Non-coherent JT 9 3.1.2 Coherent JT 10 3.1.3 Multi-antenna JT 11 3.2 Proposed BS Clustering Schemes 12 3.2.1 Restricted Strongest Clustering 12 3.2.2 Dependent Threshold Clustering 14 3.3 Cooperation Probability Analysis 15 3.3.1 Restricted Strongest Clustering 15 3.3.2 Dependent Threshold Clustering 16 3.4 Performance Analysis for RSC 16 3.4.1 Non-coherent JT 17 3.4.2 Coherent JT 22 3.4.3 Multi-antenna JT 27 3.5 Performance Analysis for DTC 32 3.5.1 Non-coherent JT 32 3.5.2 Coherent JT 35 3.5.3 Multi-antenna JT 38 4 Results and Discussions 41 4.1 Verification of Analyses 42 4.1.1 Probabilities of Cooperation 42 4.1.2 Non-coherent JT 44 4.1.3 Coherent JT 49 4.1.4 Multi-antenna JT 50 4.2 Comparison of Simulation Results 53 4.2.1 Non-coherent JT 53 4.2.2 Coherent JT 55 4.2.3 Multi-antenna JT 57 5 Conclusion and Future Work 61 5.1 Summery of Thesis 61 5.2 Future Work 62 References 63 Appendix 65 A.1 Derivation of β′ in Eq. (3.45) 65

    [1] 3GPP TR 36.819, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects (Release 11),” v11.1.0, December 2011.
    [2] Y. Kim, Y. Kim, J. Oh, H. Ji, J. Yeo, S. Choi, H. Ryu, H. Noh, T. Kim, F. Sun, Y. Wang, Y. Qi, and J. Lee, “New radio (nr) and its evolution toward 5g-advanced,” IEEE Wireless Communications, vol. 26, no. 3, pp. 2–7, 2019.
    [3] C. Yang, S. Han, X. Hou, and A. F. Molisch, “How do we design comp to achieve its promised potential?” IEEE Wireless Communications, vol. 20, no. 1, pp. 67–74, 2013.
    [4] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, “Coordinated multipoint transmission and reception in lte-advanced: deployment
    scenarios and operational challenges,” IEEE Communications Magazine, vol. 50, no. 2, 2012.
    [5] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Transactions on Communications, vol. 59, no. 11, pp. 3122–3134, 2011.
    [6] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and analysis of k-tier downlink heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550–560, 2012.
    [7] C. Saha, H. S. Dhillon, N. Miyoshi, and J. G. Andrews, “Unified analysis of hetnets using poisson cluster processes under max-power association,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 3797–3812, 2019.
    [8] G. Nigam, P. Minero, and M. Haenggi, “Coordinated multipoint joint transmission in heterogeneous networks,” IEEE Transactions on Communications, vol. 62, no. 11, pp. 4134–4146, 2014.
    [9] F. Baccelli and A. Giovanidis, “A stochastic geometry framework for analyzing pairwise-cooperative cellular networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 794–808, 2015.
    [10] X. Yu, Q. Cui, and M. Haenggi, “Coherent joint transmission in downlink heterogeneous cellular networks,” IEEE Wireless Communications Letters, vol. 7, no. 2, pp. 274–277, 2018.
    [11] D. Maamari, N. Devroye, and D. Tuninetti, “Coverage in mmwave cellular networks with base station co-operation,” IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2981–2994, 2016.
    [12] R. Tanbourgi, S. Singh, J. G. Andrews, and F. K. Jondral, “A tractable model for noncoherent joint-transmission base station cooperation,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 4959–4973, 2014.
    [13] R. Tanbourgi, S. Singh, J. Andrews, and F. Jondral, “Analysis of non-coherent joint-transmission cooperation in heterogeneous cellular networks,” 2014 IEEE International Conference on Communications (ICC), pp. 5160–5165, 2014.
    [14] X. Jiang and F.-C. Zheng, “User rate and power optimization for hetnets under poisson cluster process,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, pp. 1–14, 2019.
    [15] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its applications. Chichester, W. Sussex, New York: Wiley, 1987.
    [16] D. Moltchanov, “Distance distributions in random networks,” Ad Hoc Networks, vol. 10, no. 6, pp. 1146–1166, 2012.
    [17] M. F. Hanif, N. C. Beaulieu, and D. J. Young, “Two useful bounds related to weighted sums of rayleigh random variables with applications to interference systems,” IEEE Transactions on Communications, vol. 60, no. 7, pp. 1788–1792, 2012.
    [18] H. Alzer, “On some inequalities for the incomplete gamma function,” IEEE Transactions on Communications, vol. 66, no. 218, pp. 771–778, 1997.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE