簡易檢索 / 詳目顯示

研究生: 曾亭懿
Tseng, Ting-Yi
論文名稱: 超高精確度數值運算以及其在數據化LQ控制設計之應用
Ultra-precision arithmetic and its application in data-based LQ control designs
指導教授: 陳正宗
Chan, Jeng-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 63
中文關鍵詞: 數據化線性二次最佳控制高精度數值運算
外文關鍵詞: LQ optimal control, ultra-precision arithmetic
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在發展一套高精度數值運算法則,針對數據化線性二次式最佳控制理論中回授控制計算所產生之數值問題提供解決方法。傳統控制器設計必須經由系統鑑別對系統進行估測以掌握系統資訊,而後再進行控制器設計。在數據化回授控制器設計理論中,可以一組系統測試數據進行設計且將系統閉迴路極點置於一個半徑小於單位圓的圓形區域內,如此一來,並不再需要繁瑣的系統鑑別步驟,且保有優良的系統響應。然而,在此設計法中存在著由數值運算所造成的誤差,導致設計結果嚴重偏離。本方法藉由可任意指定精度大幅度降低運算誤差,使得後續的控制器設計程序得以進行。

    A special numerical platform is devised to enable the computations of a data-based linear quadratic (DBLQ) synthesis to be conducted with arbitrary precision that may be required. The proposed DBLQ algorithm is developed so that a LQ feedback design to confine its closed-loop poles to lie inside a prescribed circular disk within the unit circle can be synthesized based sorely on the plant test data and without explicit knowledge of the plant model. The computations of the proposed DBLQ synthesis, however, may involve arithmetic precision that far exceed those that are normally available with existing numerical platforms. In the research, a special numerical platform is devised so that numerical computations may be conducted with any arithmetic precision that is specified.

    摘要 I ABSTRACT II 誌謝 III TABLE OF CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII NOMENCLATURE XI 中文主文題要 XII 第一章 緒論 XII 第二章 線性二次式最佳控制理論 XIII 第三章 研究方法 XIV 第四章 數值模擬結果 XV 第五章 結論與建議 XVI CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Objectives 3 CHAPTER 2 Linear Quadratic Optimal Control 5 2.1 Model-Based LQ Optimal Control 5 2.1.1 Introduction of LQ Optimal Control 5 2.1.2 Ouput Feedback Realization in Optimal Control 6 2.1.3 Designing Method with Prescribed Pole Region 8 2.2 Data-Based Approach for LQ Controller Synthesis 9 2.2.1 Optimal input and optimal output 9 2.2.2 Output Feedback Controller 13 2.2.3 Design with Prescribed Pole Regison 15 CHAPTER 3 RESEARCH METHODOLOGY 17 3.1 Data Formats and IEEE 754 standard 17 3.1.1 Binary Numeral System 17 3.1.2 Fixed-Point Format 17 3.1.3 Floating-Point Format 18 3.1.4 IEEE Standard 754 for Floating-Point 19 3.2 Numerical LQ Optimal Control Problem 21 3.2.1 Previous method for large 22 3.2.2 Problem Formulation 23 3.3 Ultra-Presicion Arithmetic 25 3.3.1 Capabilities of Ultra-Precision Package 25 3.3.2 Truncation error 26 3.3.3 Numerical Examples 26 3.3.4 Solution to Numerical Problem 27 CHAPTER 4 NUMERICAL EXAMAPLES 28 4.1 Simulation Environment 28 4.1.1 Models for Tests 28 4.1.2 Variable Setting 28 4.1.3 Performance Indices 30 4.2 Numerical Simulation 31 4.2.1 Amplification-Ralated Performance 31 4.2.2 Weighting-Related Performance 32 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 34 5.1 Conclusions 34 5.2 Suggestions 35 REFERENCE 36 FIGURES 38 TABLES 57 自述 63

    [1] Kalman, R.E., Contribution to The Theory of Optimal Control. Bol. Soc. Mat. Mexi, 5,102-19 ,1960.
    [2] Kalman, R.E., The Theory of Optimal Control and The Calculus of Variation. Mathematical Optimization Techniques, 1963.
    [3] Bryson, A.E. and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing, New York.
    [4] Patel, R.V., and Munro, N., Multivariable System Theory and Design, Pergamon Press, Oxford.
    [5] Doyle, J.C., Guaranteed Margins for LQG Regulations, IEEE Transaction on Automatic Control, Vol. AC-23, pp.607-11.
    [6] Doyle, J.C. and G. Stein, Robustness with observers. IEEE Transactions on Automatic Control, AC-24, 1979, pp.607-11
    [7] Maciejowski, J. M., Multivariable Feedback Design, Addison-Wesley, New York.
    [8] Franklin, G. F., and Powell, J. D., Digital Control od Dynamic Systems, Addison-Wesley, New York.
    [9] Laudau, Y. D., Adaptive Control –The Model Reference Approach, Marcel Dekker, New York.
    [10] Gene F. Franklin and J. David Powell, Digital Control of Dynamic Systems, Addison-Wesley publishing company, California, 1980.
    [11] Solheim, O. A., Design of Optimal Control Systems with Prescribed Eigenvalues, Inc. J. Control, Vol. 19, No. 2, pp.417-427.
    [12] Ǻstrȍm, K. J., and Wittenmark, B. Adaptive Control, Addison Wesley, 1989.
    [13] Ljung, L., ans Sӧderstrӧm, T., Theory ans Practice of Recursive Identification, MIT Press, Cambrigde, MA.
    [14] Chan, J. T., 1996, Optimal Output Feedback Regulator-A Numerical Synthesis Approach for Input-Output Data, ASME/JDSMC, Vol. 118.
    [15] Chan, J. T., 1996, Data-Based Synthesis of Multivariable LQ Regulator, Automatica, Vol. 32, No. 3.
    [16] Chan, J. T., 1997, An LQ Controller with A Prescribed Pole Region, A Data-Based Design Approach, ASME/JDSMC, Vol.119, No.2, pp271-277.
    [17] Chan, J. T., December, 2000. Output Feedback Realization of State Systems, The 39th IEEE Conference on Decision and Control, Sydney, Australia. Proceedings Vol.1, pp.3670-3675
    [18] ANSI/IEEE 754-1985. American National Standard- IEEE Standard for Binary Floating-Point Arithmetic. American National Standards Institute, Inc., New York, 1985.

    下載圖示 校內:2014-08-02公開
    校外:2014-08-02公開
    QR CODE