簡易檢索 / 詳目顯示

研究生: 曾嘉政
Tseng, Jia-Cheng
論文名稱: 基於誘發拉曼散射之光子產生理論研究
Theoretical study on photon generation based on stimulated Raman scattering
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 71
中文關鍵詞: 拉曼散射光子對產生電磁波引發透明
外文關鍵詞: Raman scattering, Paired photon generation, Electromagnetically induced transparency
相關次數: 點閱:122下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用海森堡-朗之萬方程以及馬克斯威-薛丁格方程計算並討論了雙Lambda的四波混頻系統它的光子對產生率的頻譜以及光子對的二階關聯性函數;此外,我們也研究了另一種產生光子對的理論,而這方法是基於誘發拉曼散射。我們在這兩套產生光子對的模型對它們的光子產生率在特定參數下做比較,而在我們透過模擬得到的結果裡,基於誘發拉曼散射的斯托克斯光子產生率是比雙Lambda四波混頻系統的產生率還高的。而這是因為基於電磁波引發透明的四波混頻系統壓抑了真空場的參與,從而壓抑了拉曼過程。

    We theoretically discuss paired photon generation in the dual-Lambda four-wave mixing system. Using Heisenberg-Langevin formalism and Maxwell-schr"{o}dinger equation, we calculate the spectral generation rate and second-order correlation function of photon pairs. Besides, we also study the theory of the stimulated Raman scattering which is also a method of generating photon pairs.We compare the photon generation rate of these two schemes with certain parameters. Of special interest to this thesis, the photon generation rate of stimulated Raman scattering is higher than that of the dual-Lambda four-wave mixing system in our simulation. It is because the vacuum noise is depressed in the electromagnetically induced transparency based four-wave mixing system, the Raman process is therefore suppressed.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Figures vi Chapter 1. Introduction 1 1.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Theoretical model of electromagnetically induced transparency 3 2.1 Two-level System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1. Mathematical description . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2. Theoretical calculation . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Electromagnetically induced transparency . . . . . . . . . . . . . . . . . . 7 2.2.1. Mathematical description . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2. Theoretical calculation . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3. Paired photon generation in dual-Lambda system 10 3.1 Description of the paired photon generation . . . . . . . . . . . . . . . . . 10 3.1.1. Description of atoms . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2. Description of photons . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.3. The interaction Hamiltonian . . . . . . . . . . . . . . . . . . . . . 12 3.1.4. Heisenberg-Langevin equation . . . . . . . . . . . . . . . . . . . . 12 3.1.5. Maxwell-Schrödinger equation . . . . . . . . . . . . . . . . . . . . 14 3.2 Mathematical calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1. 0-th order Heisenberg-Langevin equations . . . . . . . . . . . . . . 14 3.2.2. 1st order Heisenberg-Langevin equations . . . . . . . . . . . . . . 16 3.2.3. Solving Maxwell-Schrödinger equations . . . . . . . . . . . . . . . 17 3.3 The generation rates of Stokes and antiStokes lights . . . . . . . . . . . . 18 3.4 Discussion of the generation rates . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Second-order correlation function of the generated fields . . . . . . . . . . 30 Chapter 4. Photon generation based on stimulated Raman scattering 40 4.1 Description of the Stimulated Raman scattering . . . . . . . . . . . . . . . 40 4.1.1. Description of atoms . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.2. Description of photons . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.3. The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.4. Heisenberg equation for the intermediate states . . . . . . . . . . . 42 4.1.5. Maxwell-schrödinger equation for the Stokes field . . . . . . . . . . 44 4.2 Analytical solution of the Stokes field . . . . . . . . . . . . . . . . . . . . 45 4.2.1. Solving the coupled equations . . . . . . . . . . . . . . . . . . . . 45 4.2.2. Stokes field and its generation rate . . . . . . . . . . . . . . . . . . 47 4.3 Steady-state Raman scattering . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 5. Conclusion and outlook 55 References 56 Appendix A. Derivation of Heisenberg-Langevin equation 58 Appendix B. Derivation of fluctuation-dissipation theorem 62 Appendix C. Solution of the first-order atomic operators 64 Appendix D. Transform to the moving frame 66 Appendix E. Anti-Stokes generation and two-photon correlation of the DLCZ protocol 67

    [1] M Abramowitz. Handbook of mathematical functions, edited by m. abramowitz and iastegun. National Bureau of Standards, Applied Mathematics Series, 55, 1973.
    [2] Vlatko Balić, Danielle A Braje, Pavel Kolchin, GY Yin, and Stephen E Harris. Generation of paired photons with controllable waveforms. Physical review letters,94(18):183601, 2005.
    [3] Charles H. Bennett and Gilles Brassard. An update on quantum cryptography. In George Robert Blakley and David Chaum, editors, Advances in Cryptology, pages 475–480, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.
    [4] K-J Boller, A Imamoğlu, and Stephen E Harris. Observation of electromagnetically induced transparency. Physical Review Letters, 66(20):2593, 1991.
    [5] Shengwang Du, Chinmay Belthangady, Pavel Kolchin, GY Yin, and Stephen E Harris. Observation of optical precursors at the biphoton level. Optics letters, 33(18):2149–2151, 2008.
    [6] Shengwang Du, Pavel Kolchin, Chinmay Belthangady, GY Yin, and Stephen E Harris. Subnatural linewidth biphotons with controllable temporal length. Physical review letters, 100(18):183603, 2008.
    [7] L-M Duan, Mikhail D Lukin, J Ignacio Cirac, and Peter Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862):413–418, 2001.
    [8] Artur K. Ekert. Quantum cryptography based on bell's theorem. Phys. Rev. Lett., 67:661–663, Aug 1991.
    [9] Mark Fox. Quantum optics: an introduction, volume 15. OUP Oxford, 2006.
    [10] M. Fernando Gonzalez-Zalba. Solid-state qubits, 2018.
    [11] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products. Academic press, 2014.
    [12] Stephen E Harris, JE Field, and A Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Physical Review Letters, 64(10):1107, 1990.
    [13] Pavel Kolchin. Electromagnetically-inducedtransparency-based paired photon generation. Physical Review A, 75(3):033814, 2007.
    [14] A Kuzmich, WP Bowen, AD Boozer, A Boca, CW Chou, L-MDuan, and HJ Kimble. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature, 423(6941):731–734, 2003.
    [15] Thaddeus D Ladd, Fedor Jelezko, Raymond Laflamme, Yasunobu Nakamura, Christopher Monroe, and Jeremy Lloyd O'Brien. Quantum computers. Nature, 464(7285):45–53, 2010.
    [16] William Henry Louisell and William H Louisell. Quantum statistical properties of radiation, volume 7. Wiley New York, 1973.
    [17] Leonard Mandel and Emil Wolf. Optical coherence and quantum optics. Cambridge university press, 1995.
    [18] Peter Michler. Quantum dots for quantum information technologies, volume 237. Springer, 2017.
    [19] MG Raymer and J Mostowski. Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation. Physical Review A, 24(4):1980, 1981.
    [20] Tobias Schaetz. Trapping ions and atoms optically. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(10):102001, 2017.
    [21] Marlan O Scully and CH Raymond Ooi. Improving quantum microscopy and lithography via raman photon pairs: Ii. analysis. Journal of Optics B: Quantum and Semiclassical Optics, 6(8):S816, 2004.
    [22] Marlan O Scully and M Suhail Zubairy. Quantum optics, 1999.
    [23] Daniel A Steck. Rubidium 87 d line data, 2001.
    [24] Caspar H van der Wal, Matthew D Eisaman, Axel André, Ronald L Walsworth, David F Phillips, Alexander S Zibrov, and Mikhail D Lukin. Atomic memory for correlated photon states. Science, 301(5630):196–200, 2003.
    [25] Tao Xin, Bi-Xue Wang, Ke-Ren Li, Xiang-Yu Kong, Shi-Jie Wei, Tao Wang, Dong Ruan, and Gui-Lu Long. Nuclear magnetic resonance for quantum computing: techniques and recent achievements. Chinese Physics B, 27(2):020308, 2018.

    下載圖示 校內:2021-07-31公開
    校外:2021-07-31公開
    QR CODE