簡易檢索 / 詳目顯示

研究生: 高碩廷
Kao, Shuo-Ting
論文名稱: 利用密度泛函理論模擬電化學於銅金屬(100)表面上進行非勻相催化之尿素生成
Simulating Electrochemical Heterogeneous Catalysis for Urea Formation on the Cu (100) surface using Density Functional Theory
指導教授: 鄭沐政
Cheng, Mu-jeng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 36
中文關鍵詞: 電化學尿素密度泛涵理論碳氮鍵生成共還原
外文關鍵詞: electrochemistry, urea, DFT, C-N formation, co-reduction
相關次數: 點閱:32下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尿素是一種多功能性的有機化合物,作為農作物肥料的主要原料之一,其經濟價值不言而喻。然傳統工業製備尿素需要在高溫高壓的條件下進行,其所耗費之能源較高,改良尿素之製備方法是現代科學的一大課題。電化學金屬非勻相催化二氧化碳與硝酸根/亞硝酸根共還原之反應能夠在常溫常壓的條件下生成尿素,此反應在銅表面上有良好的反應性,不過其反應途徑尚未確定,因此我們的團隊先前在銅(111)表面上進行一系列之理論計算研究,希望藉由確認反應途徑,為優化實驗條件提供建議。此外根據他人的研究指出,銅(100)表面上的雙橋位點(double-bridge site)對鍵結生成或斷裂的反應性較高,我們認為它能提高碳氮鍵生成反應性的潛力。本研究在銅(100)表面上、水相且反應之pH值為7的條件下,模擬CO2與NO3-/NO2-共還原生成尿素的反應。與先前在銅(111)表面上的研究不同,第一個碳氮鍵的生成有兩種可行的反應途徑,在這之中,雙橋位點確實可以促進表面反應的反應性,並且藉由活化能拆解分析法的結果,我們發現發生於雙橋位點的第一個碳氮鍵生成反應有較低的相互作用能,以及較低的*CO形變能。結合計算結果與他人的實驗證據,我們發現第二個碳氮鍵生成的反應途徑與推測不同,是由*NCO與溶液中的氨(NH3)反應產生的,在外加電壓為-1.0 VSHE時,其反應活化能為0.40 eV,後續經過熱力學上可行之一個氫離子解離以及兩次氫化後,即可得到尿素。此研究對於在銅(100)表面上進行CO2與NO3-/NO2-共還原生成尿素的反應,提供了一個完整的反應路徑推測,並且推論若提高系統中氨的濃度,可能會提高第二個碳氮鍵生成的反應性,進而提高尿素的產率。

    Urea, a versatile organic compound widely used as a primary ingredient in agricultural fertilizers, holds significant economic value. Traditional industrial methods for urea synthesis involve high-temperature and high-pressure conditions, leading to substantial energy consumption. Developing alternative and energy-efficient approaches for urea production is a pressing challenge in modern science. Electrochemical metal heterogeneous catalysis has shown promise in the co-reduction of carbon dioxide (CO2) and nitrate/nitrite ions (NO3-/NO2-), which can lead to urea formation under ambient conditions. Copper surfaces have demonstrated remarkable reactivity in this reaction; however, the precise reaction pathway remains unclear. In this study, we conducted a series of theoretical calculations on copper (100) surfaces to shed light on the reaction mechanism. The investigation revealed the crucial role of double-bridge sites on copper (100) surfaces, which enhance the reactivity for the formation of the first carbon-nitrogen bond. Additionally, by integrating computational insights with experimental findings, we discovered that the formation of the second carbon-nitrogen bond involves the reaction between *NCO and ammonia (NH3) in the solution. Under an applied voltage of -1.0 VSHE, the reaction barrier is equal to 0.40 eV. The proposed reaction pathway, along with suggested optimizations of experimental conditions, contributes to the advancement of efficient urea synthesis through the co-reduction of CO2 and NO3-/NO2- on copper (100) surface.

    第一章、緒論 1 1-1 電化學催化二氧化碳與硝酸根/亞硝酸根共還原反應生成尿素 1 1-2 金屬非勻相催化中不同特徵表面之反應活性 3 第二章、理論計算方法 4 2-1 計算方法 4 2-2 恆定電壓模型(Constant Electrode Potential Model) 6 2-3 活化能拆解分析法(Barrier Decomposition Analysis, BDA) 7 第三章、結果與討論 8 3-1 第一個碳氮鍵生成之反應探討 8 3-1-1 銅(100)表面上之模擬結果 8 3-1-2 銅(100)與銅(111)表面反應性比較 13 3-2 第二個碳氮鍵生成之反應探討 20 3-2-1 碳氮中間體之選擇 20 3-2-2 採用LH反應機制之結果探討 22 3-2-3 採用ER反應機制生成第二個碳氮鍵 27 3-3 銅(100)表面上生成尿素之可能反應途徑 30 3-4 結論 32 第四章、參考文獻 33

    (1) Masami Shibata, K. Y., Nagakazu Furuya. Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J. Electroanal. Chem. 1995, 387, 143-145.
    (2) Masami Shibata, K. Y., Nagakazu Furuya. Electrochemical synthesis of urea at gas-diffusion electrodes Part II. Simultaneous reduction of carbon dioxide and nitrite ions at Cu, Ag and Au catalysts. J. Electroanal. Chem. 1998, 442, 67-72.
    (3) Masami Shibata, K. Y., Nagakazu Furuya. Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes: Ill. simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts. J. Electrochem. Soc. 1998, 145, 595-600.
    (4) Masami Shibata, K. Y., Nagakazu Furuya. Electrochemical Synthesis of Urea at Gas‐Diffusion Electrodes: IV. simultaneous reduction of carbon dioxide and nitrate ions with various metal catalysts. J. Electrochem. Soc. 1998, 145, 2348-2353.
    (5) Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catal. 2019, 9 (8), 7052-7064.
    (6) Long, J.; Chen, S.; Zhang, Y.; Guo, C.; Fu, X.; Deng, D.; Xiao, J. Direct Electrochemical Ammonia Synthesis from Nitric Oxide. Angew. Chem., Int. Ed. 2020, 59 (24), 9711-9718.
    (7) Chun, H.-J.; Zeng, Z.; Greeley, J. DFT Insights into NO Electrochemical Reduction: A Case Study of Pt(211) and Cu(211) Surfaces. ACS Catal. 2022, 12 (2), 1394-1402.
    (8) Wang, Y.; Qin, X.; Shao, M. First-principles mechanistic study on nitrate reduction reactions on copper surfaces: Effects of crystal facets and pH. J. Catal. 2021, 400, 62-70.
    (9) Casey-Stevens, C. A.; Ásmundsson, H.; Skúlason, E.; Garden, A. L. A density functional theory study of the mechanism and onset potentials for the major products of NO electroreduction on transition metal catalysts. Appl. Surf. Sci. 2021, 552.
    (10) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Progress and Perspectives of Electrochemical CO(2) Reduction on Copper in Aqueous Electrolyte. Chem Rev 2019, 119 (12), 7610-7672.
    (11) Yang, G.-L.; Hsieh, C.-T.; Ho, Y.-S.; Kuo, T.-C.; Kwon, Y.; Lu, Q.; Cheng, M.-J. Gaseous CO2 Coupling with N-Containing Intermediates for Key C–N Bond Formation during Urea Production from Coelectrolysis over Cu. ACS Catal. 2022, 12 (18), 11494-11504.
    (12) De Gregorio, G. L.; Burdyny, T.; Loiudice, A.; Iyengar, P.; Smith, W. A.; Buonsanti, R. Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO(2) Reduction at Commercially Viable Current Densities. ACS Catal. 2020, 10 (9), 4854-4862.
    (13) Li, H.; Li, Y.; Koper, M. T.; Calle-Vallejo, F. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J. Am. Chem. Soc. 2014, 136 (44), 15694-15701.
    (14) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens Matter 1993, 47 (1), 558-561.
    (15) G. Kresse, J. F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
    (16) G. Kresse, J. F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6 (1), 15-50.
    (17) John P. Perdew, K. B., and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
    (18) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.
    (19) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B Condens Matter 1994, 50 (24), 17953-17979.
    (20) Joubert, G. K. a. D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
    (21) Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151 (23), 234101.
    (22) J. K. Nørskov, J. R., A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.
    (23) Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. J. Phys. Chem. Lett. 2016, 7 (8), 1471-1477.
    (24) Hu, Z.-P. L. a. P. General Rules for Predicting Where a Catalytic Reaction Should Occur on Metal Surfaces: A Density Functional Theory Study of C-H and C-O Bond Breaking/Making on Flat, Stepped, and Kinked Metal Surfaces. J. Am. Chem. Soc. 2003, 125 (7), 1958-1967.
    (25) Hammer, B. Bond Activation at Monatomic Steps: NO Dissociation at Corrugated Ru(0001). Phys. Rev. Lett. 1999, 83.
    (26) Krzywda, P. M.; Paradelo Rodríguez, A.; Benes, N. E.; Mei, B. T.; Mul, G. Carbon-nitrogen bond formation on Cu electrodes during CO2 reduction in NO3- solution. Appl. Catal., B 2022, 316.
    (27) Anatoli A Davydov; Bell, A. T. infrared Study of the Reactions between NO and CO and NO and H, on a Silica-Supported Ru Catalyst. J. Catal. 1977, 49 (3), 345-355.
    (28) Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard, W. A., 3rd; Jiao, F. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 2019, 11 (9), 846-851.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE