簡易檢索 / 詳目顯示

研究生: 楊勝州
Young, Sheng-Joue
論文名稱: 氧化鋅系列金半金光檢測器之製作與研究
The Fabrication and Study of ZnO Based MSM Photodetector
指導教授: 蘇炎坤
Su, Yan-Kuin
張守進
Chang, Shoou-Jinn
姬梁文
Ji, Liang-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 75
中文關鍵詞: 光檢測器氧化鋅金半金
外文關鍵詞: MSM, photodetector, ZnO
相關次數: 點閱:45下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中我們使用了近年來相當熱門的氧化鋅半導體材料來製作紫外光波段的金半金光檢測器。一開始先描述氧化鋅薄膜的磊晶成長過程,在這裡我們所使用的氧化鋅薄膜是用分子束磊晶的方式來成長。磊晶後的薄膜再經過光激螢光法及x光繞射的頻譜分析來確認我們的氧化鋅薄膜品質。

      薄膜品質確定好後就開始我們的金半金光檢測器的製作,我們使用了五種金屬來做研究,分別是金、銀、鈀、鎳/金跟銥。這五種金屬拿來當氧化鋅的接觸電極時,都可以得到蕭基接觸。製作完後,就去量測光電流與暗電流,我們所使用的光源是氙燈,經過量測後我們得到上面五種金屬的光暗電流比值在偏壓為1伏特下分別為:4610、2520、322、118與31.4。進一步的,我們使用了熱離子放射理論的公式來計算它們的蕭特基能障高度分別為:0.712、0.736、0.701、0.613與0.56 eV .

      在光響應方面,當偏壓為1V,入射光波長為370 nm 時,分別對由這五種金屬所製作而成的金半金光檢測器作量測,可得到最大的光響應值分別為 0.134、0.066、0.051、0.09與0.138 A/W.由光暗電流比值跟光響應的分析,我們得到使用金來製作金半金光檢測器的接觸電極可以得到最佳的效能。
    另一方面,雜訊也是影響檢測器的一個重要因素,所以我們也去量測了低頻雜訊,使用頻寬及偏壓當變數時,我們得到的雜訊是屬於1/f的類型,當頻寬固定在頻寬100 Hz 下,偏壓在1V時,我們可以分別計算出氧化鋅金半金光檢測器相關的雜訊功率密度為: 3.17x10-13 、 6.8x10-13 、 1.13x10-12 、 6.4x10-13 與 6x10-13 W ; 在歸一化的檢測度方面則分別為: 2.23x1012 、 1.04x1012 、 6.25x1011 、 1.1x1012 與 1.18x1012 cmHz0.5W-1。

     In this thesis, I first introduced the growth process of our ZnO films. Those films were growth by the Molecular Beam epitaxy system. After growing, I used the photoluminescence system and X-ray diffraction system to check our films. And the quality of those films were good. And then,I study the characteristics of five contact electrodes. These contact electrodes are Au, Ag, Pd, Ni/Au and Ir. I used these metals on Zno MSM photodetectors as contact electrodes. The photo/dark contrast of Au, Ag, Pd, Ni/Au and Ir MSM photodetectors were 4610, 2520, 322,118 and 31.4 at 1V bias, respectively. And I also use the thermionic emission theory to calculate their barrier height. The value was 0.712、0.736、0.701、0.613 and 0.56 eV , respectively.

     The peak responsivity of those ZnO MSM photodiodes occurs at around 370 nm and its value equals to 0.134 A/W and 0.207 for Au contact electrode, 0.066 A/W and 0.09 A/W for Ag contact electrode, 0.051A/W and 0.075 A/W for Pd contact electrode, 0.091 A/W and 0.141 A/W for Ni/Au contact electrode and 0.138 A/W and 0.172 A/W for Ir contact electrode when the sample was reversed biased at 1 V and 3 V, respectively. And which corresponds to quantum efficiencies of 32.8, 17.3, 11.4, 23.8 and 30.86 % respectively. It could be found that Au was the most suitable electrode for ZnO MSM photodetectors among five materials.

     Furthermore, for a given bandwidth of 100 Hz, the corresponding noise equivalent power (NEP) and normalized detectivity D* for those ZnO MSM photodetector are also calculated .

    Chinese Abstract………………………………...………………………..i English Abstract………………………………...………………………iii Acknowledgement……………………...………………………………..v Contents…………………………………...…………………………….vi Table and Figure Captions.…………….......…………...……………...viii Chapter 1 Introduction ………………………………………………...1 1-1 Background………………………………………………...1 1-2 Basic properties of ZnO……………………………………2 1-3 The application of the device………………………………3 1-4 Organization………………………………………………..4 Chapter 2 Fabrication System and Measurement Theory……………..8 2-1 Use the Molecular Beam Epitaxy(MBE) system to grow the ZnO film…………………………………………………...8 2-2 Photoluminescence (PL) measurement…………………..10 2-3 Measurement of barrier height…………………………...11 2-3-1 Capacitance-Voltage (C-V) Measurement…………...11 2-3-2 Current-Voltage (I-V) Measurement…………………12 2-3-3 Photoelectric Measurement…………………………..12 2-4 The Responsivity Measurement Systems and Other Measurement Systems……………………………………13 Chapter 3 The Fabrication and Characteristics of ZnO Photodetectors 3-1 Introduction………………………………………………17 3-2 The characteristics of our ZnO sample…………………..18 3-3 Current transport mechanisms…………………………...19 3-4 Fabrication of ZnO MSM photodetectors………………..20 3-5 The characteristics of ZnO MSM photodetectors………..21 Chapter 4 Low Frequency Noise of our MSM photodetectors……..36 4-1 Introduction……………………………………………...36 4-2 Types of Low Frequency Noise………………………....36 4-2-1 Thermal noise………………………………………...36 4-2-2 Shot noise…………………………………………….37 4-2-3 Generation-Recombination (G-R) noise……………..38 4-2-4 Flicker (1/f) noise…………………………………….38 Chapter 5 Conclusion and Future Works…………………………...50 5-1 Conclusion………………………………………………50 5-2 Future works…………………………………………….51 Reference.........................................53 Publication List..................................62

    [1] S. Strite, M. E. Lin, and H. Morkoc, “Low- frequency noise in Al0.4Ga0.6N-based
    Schottky barrier photodetectors” Thin
    Solid Films,Vol. 231, 197 (1993)
    [2] R. F. Davis, “ Ⅲ - Ⅴ nitrides for
    electronic and optoelectronic
    applications”, Proc. IEEE 5, 702 (1991)
    [3] M. A. Khan, M. S. Shur, J. N. Kuzunia, Q.
    Chen, J. Burm, and W. Schaff, “Temperature
    activated conductance in GaN/AlGaN
    heterostructure field effect transistors
    operating at temperatures up to 300°C“,
    Appl. Phys. Lett, Vol 66, 1083 (1995)
    [4] O. Aktas, Z. F. Fan, S. N. Mmohammand, A.
    E. Botchkarev, and H.
    Morkoc, “High temperature characteristics
    of AlGaN/GaN modulation
    doped field-effect transistors“, Appl.
    Phys. Lett, Vol. 69, 3872 (1996)
    [5] J. Pankove, E. Miller, D. Richmann, and J.
    Berkeyheiser, J. Lumin. Vol.
    4, 63 (1971)
    [6] S. Nakamura, M. Senoh, N. Iwasa, and S. I.
    Nagahama, “High-power
    InGaN single-quantum-well-structure blue
    and violet light-emitting
    diodes”, Appl. Phys. Lett, Vol. 67,1868
    (1995)
    [7] S. Nakamura, “First Ⅲ-Ⅴ-nitride-based
    violet laser diodes”, J.
    Cryst. Growth Vol. 170, 11 (1997)
    [8] S. J. Pearton,a) D. P. Norton, K. Ip, and
    Y. W. Heo T. Steiner, “Recent
    advances in processing of ZnO” , J. Vac.
    Sci. Technol. B 22Ñ3Ö, May’Jun 2004
    [9] D. C. Look, Mater. Sci. Eng., B 80, 383
    ~2001!.
    [10] M. Wraback, H. Shen, S. Liang, C. R. Gorla,
    and Y. Lu, Appl. Phys.
    Lett.74, 507 (1999).
    [11] J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K.
    Choi, Appl. Phys. Lett. 78,
    2842 (2001).
    [12] J. E. Nause, III-V’s Review 12, 28 (1999).
    [13] Y. Chen, D. Bagnell, and T. Yao, Mater.
    Sci. Eng., B 75, 190 (2000).
    [14] D. C. Look, D. C. Reynolds, J. W. Hemsky,
    R. L. Jones, and J. R.
    Sizelove, Appl. Phys. Lett. 75, 811 (1999).
    [15] D. C. Look, J. W. Hemsky, and J. R.
    Sizelove, Phys. Rev. Lett. 82, 2552
    (1999).
    [16] F. D. Auret, S. A. Goodman, M. Hayes, M. J.
    Legodi, H. A. van Laarhoven,
    and D. C. Look, Appl. Phys. Lett. 80, 956
    (2002).
    [17] S. O. Kucheyev, J. E. Bradley, J. S.
    Williams, C. Jagadish, and M.
    V.Swain, Appl. Phys. Lett. 80, 956 (2002).
    [18] M. Wraback, H. Shen, S. Liang, C. R. Gorla,
    and Y. Lu, Appl. Phys. Lett.
    76, 507 (1999).
    [19] T. Aoki, D. C. Look, and Y. Hatanaka, Appl.
    Phys. Lett. 76, 3257 (2000).
    [20] P. M. Verghese and D. R. Clarke, J. Appl.
    Phys. 87, 4430 (2000).
    [21] C. R. Gorla, N. W. Emanetoglu, S. Liang, W.
    E. Mayo, Y. Lu, M. Wraback,
    and H. Shen, J. Appl. Phys. 85, 2595 (1999).
    [22] H. Ohta, K. Kawamura, M. Orita, M. Hirano,
    N. Sarukura, and H.
    Hosono, Appl. Phys. Lett. 77, 475 (2000).
    [23] M. Joseph, H. Tabata, and T. Kawai, Jpn. J.
    Appl. Phys., Part 2 38,
    L1205(1999).

    下載圖示 校內:2010-07-04公開
    校外:2015-07-04公開
    QR CODE