簡易檢索 / 詳目顯示

研究生: 黃釧鎰
Huang, Chuan-I
論文名稱: 部分植生渠道之浸沒植生水理分析
Hydraulic analysis of partly vegetated open channels under submerged situation
指導教授: 蔡長泰
Tsai, Chang-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 92
中文關鍵詞: 植生
外文關鍵詞: vegetation
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 洪水漫過主深槽而淹沒佈滿植生之洪水平原時,植生覆蓋會增加糙度而遲緩流速,能減少土壤沖刷達保護底床及固土護岸之功能,也具維護生態及景觀遊憩之價值,但也因而將增加主流深槽流量,影響深槽之沖淤現象,因而需要分析主流深槽流量。
    本文旨在研究如同深槽與洪水平原植生情況不同之部分植渠道之水理現象,以分析無植生之主流區流量。本研究基於一維定量緩變速流理論推導浸沒之部分植生矩形斷渠流之基本方程式並設計水工試驗。本研究對於植生主要考慮莖幹之影響,並以硬性圓柱群模擬植生莖幹分佈。
    由實驗結果可看出:
    1. 當水流進入植生段時,各橫斷面之植生區與主流區(無植生)之水位可視為相等,故可假設橫斷面水面為水平,以推導動量方程式及能量方程式。
    2. 植生段之主流區(無植生)及植生區之下層(植生內部)及上層(植生頂部以上)之流速明顯不同。應用實驗資料可得出動能修正係數公式及動量修正係數公式。
    ( 4-12 )
    ( 4-13 )
    3. 植生段上游流速分佈接近均勻,進入植生段入口段之主流區及植生區下層之流量為沿渠增之變積流現象,植生段下層則為沿渠減少之變積流現象,而後漸趨穩定,接近出口時,主流區流量為漸減之變積流現象。由實驗數據之分析可得主流區與全斷面流量關係可以 ( 4-3 )表示。 ( 4-3 )

    4. 基於一維定量緩變速渠流之能量坡度與摩擦坡度相等之假設,本研究推導出曼寧糙率係數可由植生莖幹曳引力係數、渠床及岸壁摩擦係數計算之公式,並由實驗資料之分析,顯示頗為符合,誤差在 以內:

    ( 2-37 )
    ( 2-40 )
    5. 植生密度足夠大時,部分植生段對水流會造成過度束縮,以至主流區形成超臨界流,並因尾水為亞臨界流而出現水躍現象。依據實驗資料比較,發生水躍之判別式為 ( 4-1 )式:
    ( 4-1 )
    研究依據所推導之全斷面能量方程式、曼寧糙率係數公式及動能修正係數公式、主流區流量比公式等,發展以一維緩變速流標準步驟法為基礎之主流區流量演算法,可用於計算主流區流量。

    When the flood occurs and water flows above the vegetation in the floodplain, the vegetation can increase roughness and retard the flow velocity so that this can prevent bed erosion and enhance bank stability. In addition, it also maintains ecological condition and increases the value of landscaping entertainment. However, the existence of plants will increase the capacity of the main zone and affect on the sediment transport. Hence, the analysis of the discharge in the mainstream is imperative.
    The main objective of the present study is to investigate the hydraulic phenomenon of the partly-vegetated channels and the flow capacity of the main zone (non-vegetated zone). In the steady gradually-varied flow, we could derive governing equations of the partly-vegetated open channels under a submerged situation and then design the laboratory experiment. To examine the influence of stems on the experiment, stiff cylinders were used to simulate the stems of the vegetation.
    Based on our research, some crucial results can be drawn:
    1. When the flow moves into vegetated channels, it is found that the stages of each cross section in the vegetated and non-vegetated (main channel) zones are almost the same. By assuming the water level to be the horizontal, the momentum and energy equations were obtained mathematically.
    2. The velocity distributions were obviously different between the main channel and vegetated channels (i.e. upper and inner the vegetation). After anallyzing the experimental data, we obtained correction factors ( and ) for the formulas of momentum and energy.
    ( 4-12 )
    ( 4-13 )
    3. In the upstream of the vegetated channels, the velocity distribution is closed to be uniform. It was the spatially-varied flow when the water flows into the vegetated channels and the discharge was increased from the upstream to the downstream, including the non-vegetated zone and inside the vegetation; it was decreased along the channels within the vegetation. Around the exit of the vegetated channels, the discharge of the main zone is decreased with the spatially varied condition. Based on the analysis of the experimental date, we could get the relation between the discharge of the main zone and all cross sections, which can be expressed by (4-3).
    ( 4-3 )
    4. Based on the assumption that the energy slope was equal to the friction slope in the one- dimension steady gradually-varied flow, we derived the expression of the Manning roughness coefficient from the vegetation steam drag coefficient and friction coefficients of bed and wall. The application of the Manning roughness coefficient was verified to be very well from experiment data, which is within the 10% error.

    ( 2-37 )
    ( 2-40 )
    5. It was over contraction in the partly-vegetated channels if the density of the vegetation is great enough, and then the supercritical flow can be observed in the main zone. The hydraulic jump occurs at the end of the channel, because the flow condition changes from the supercritical flow to the subcritical flow. The discriminant of hydraulic jump could be compared with experimental data, which is express by (4-1):
    ( 4-1 )
    Based on the formulas of the energy equation, Manning rough coefficient, the energy correction factor, as well as the ratio of the discharge within the main zone and all cross sections, the discharge of the main zone can be determined in order to get the capacity of the main zone following the standard step method under the one-dimensional steady gradually varied flow.

    中文摘要 I Abstract III 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 表目錄 XI 符號表 XII 第一章 緒論 1 1-1 研究緣起與目的 1 1-2 文獻回顧 2 1.3 論文架構 4 第二章 部分寬度浸沒植生之明渠流基本方程式 7 2-1 植生下層區動量方程式 7 2-2 植生上層區動量方程式 10 2-3 植生段主流區動量方程式 13 2-4 植生段動量方程式 15 2-5 植生段能量方程式 18 2-6 曼寧糙率係數 19 第三章 試驗配置與步驟 25 3-1 實驗目的 25 3-2 試驗設備 25 3-3 試驗佈置與量測項目 26 3-4 試驗步驟 27 第四章 實驗成果之分析與討論 34 4-1 橫向水面線 34 4-2 縱向水面線及水躍 35 4-3 流速分佈 35 4-4 分區平均流速 36 4-5 流量分配 37 4-6 動能修正係數與動量修正係數 38 4-7 曼寧糙率係數與能量方程式之應用 40 第五章 結論與建議 54 5-1 結論 54 5-2 建議 55 參考文獻 56 附錄 59

    1.低水治理河川保育研究,經濟部水資源局,中華民國八十六年六月。
    2.低水治理之河流保育研究,經濟部水資源局,中華民國八十六年六月。
    3.河川區域種植規定修正研究,經濟部水利署,中華民國九十三年六月。
    4.台灣地區河川區域圖鑑,經濟部水利署,中華民國九十三年六月。
    5.郭律君,「水流流經群樁之水理特性研究」,國立成功大學水利及海洋研究所碩士論文,中華民國九十四年六月。
    6.張乃薇,「植生渠床之定量緩變速流研究」,國立成功大學水利及海洋研究所碩士論文,中華民國九十五年五月。
    7.徐邵涵,「部分植生渠道之未浸沒植生水理分析」,國立成功大學水利及海洋研究所碩士論文,中華民國九十七年五月。
    8.Carollo, F. G.; Ferro, V.; and Termini, D., “Flow velocity measurements in vegetated channels.”J. Hydraulic Eng. 128(7),664-673, 2002.
    9.Chow, V.T.,“Open-Channel Hydraulics.”,McGraw-Hill, 1959.
    10.Elliott, A. H., “Settling of fine sediment in a channel with emergent vegetation. ” J. Hydraulic Eng. 126(8), 570-577, 2000.
    11.Fenzl, R.N.,“Hydraulic resistance of broad shallow vegetated channels.”PhD thesis, University of California at Davis, Davis, Calif, 1962.
    12.Forsell, B. ; and Hedeström, B.,“Lamella separation: A compact sedimentation technique.”J. Water Pollution Control Fedn., 47(4),834-842,1975.
    13.Juha Järvelä,“Flow resistance of flexible and stiff vegetation : a flume study with natural plant.”J. Hydrol. 269.44-54, 2002.
    14.Juha Järvelä,“Effect of submerged flexible vegetation on flow structure.”J. Hydrol. 307,233-241, 2005.
    15.Klopstra, D. ; Barneveld, H.J. ; Van Noortwijk, J.M. ; and Van Velzen, E.H.,“Flow retardance in vegetated channels.”J. Irrig. Drain. Div. ASCE95(2),329-340,1969.
    16.Kouwen, N. ; Unny, T.E. ; Hill, H.M.,“Flow retardance in vegetated channels.”J. Irrig. Drain. Div. ASCE 95 (2), 329-340, 1969.
    17.Li, R.M.; and Shen, H.W.,“Effect of tall vegetations on flow and Sediment.”J, Hydraul. Div., 99(HY5), 793-814,1973.
    18.Munson, Young, Okiishi,“Fundamentals of fluid mechanics.”3/e, John Wiley & Sons, Inc., 1998.
    19.Nadaokak“Shallow-water turbulence modeling and horizontal large-eddy computation of river flow.”Journal of Hydraulic Engineering-ASCE 124 : 493 1998.
    20.Nepf, H.M.,“Drag, turbulence, and diffusion in flow through emergent vegetation.”Water Resources Research, Vol. 35 (2), 479-489, 1999.
    21.Nepf, H.M. ; Vivoni, E.R.,“Flow structure in depth-limited, vegetated flow.”J. Geophys. Res.105 (C12), 28547-28557, 2000.
    22.Plate, E.J. ; Quraishi, A.A.,“Modeling of velocity distributions inside and above tall crops.”J. Appl. Meteorol. 4, 400-408, 1965.
    23.Poggi D. “The effect of vegetation density on canopy sub-layer turbulence.”Boundary-layer meteorology 111 : 615, 2004.
    24.Stilwater outdoor Hydraulic Laboratory : Handbook of channel desigh for soil and water conservation, U.S. Soil Conservation Service SCS-TP-61, March, 1947.
    25.Su, X. H.“Large eddy simulation of free surface turbulent flow in partly vegetated open channels.” International Journal for numerical methods in fluids 39 : 919 Doi 10.1002/fld.352 2002.
    26.Temple, D.M.,“Velocity distribution coefficients for grasslined channels.”J. Hydraulic Eng. 112 (3), 193-205, 1986.
    27.Temple, D.M.,“Closure to velocity distribution coefficients for grass-lined channels.”KHL Progressive Rep. No.1, Kanazawa University, Japan, 1990.
    28.Tsujimoto, T., and Kitamura, T.,“Velocity profile of flow in vegetated-bed channels.”KHL Progressive Rep. No.1, Kanazawa University, Japan, 1990.
    29.Tsujimoto, T.,“Fluvial processes in streams with vegetation.”J. Hydraulic Res. 37 (6), 789-803, 1999.
    30.Willson, C.A.M.E ; Stoesser, T. ; Bates, P.D. ; and A. Batemann Pinzen,“Open channel flow through different forms of submerged flexible vegetation.”J. Hydraulic Eng. 129 (11), 847-853, 2003.
    31.W. O. Ree “Hydraulic characteristic of vegetation for vegetated waterways.”Agricultrual Engineering, Vol So, No4, pp184-187 and 189, Arip, 1949.
    32.W. O. Ree and V.J. Palmer“Flow of water in channels protected by vegetative lining, U.S. Soil Conservation Service, Technical Bulletin, No967 Feb,1949.

    下載圖示 校內:立即公開
    校外:2008-08-13公開
    QR CODE