| 研究生: |
陳宥豪 Chen, Yu-Hao |
|---|---|
| 論文名稱: |
以虛擬實境驅動氣候調適行動:基於影像辨識與微氣候模擬的熱舒適實踐 Virtual Reality-Driven Climate Adaptation Actions: Thermal Comfort Application Based on Image Recognition and Microclimate Simulation |
| 指導教授: |
沈揚庭
Shen, Yang-Ting 林子平 LIN, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 熱舒適 、虛擬實境(VR) 、影像辨識 、微氣候模擬 |
| 外文關鍵詞: | Thermal comfort, Virtual reality, Image recognition, Microclimate simulation |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球氣候變遷和都市熱島效應持續加劇,對戶外活動的舒適性與安全性構成了嚴重的威脅與挑戰,本研究基於影像辨識技術與微氣候模擬工具,提出一種框架理解真實場域中物理環境與人類行為之間的關係,透過 Autodesk Insight 模擬單位面積的太陽輻射量,將物理環境參數(如氣溫與太陽輻射)進行換算成熱舒適指標,並結合 CCTV 所收集的影像數據,利用影像辨識技術校正與轉化為行為數據(如活動路徑與停留區域),進一步分析揭露微氣候變化如何影響人類行為。
基於上述研究,開發了一款名為 《Shadow Drift》的虛擬實境(VR)遊戲,結合教育性與互動性,以提升民眾對氣候調適行動的認知與參與度,該遊戲將微氣候數據與行為數據以可視化方式互動性的方式呈現在虛擬場景中,並導入真實的微氣候模擬結果,使體驗者直觀觀察微氣候變化如何影響自身行為,同時體驗者可透過選擇不同寬高比的樹種進行種植,藉此改變場域的熱舒適性,從而引導其反思場域設計與熱舒適性之間的關聯,並深化對相關議題的理解,同時該平台也為設計師提供了一種新的工具,用以觀察使用者偏好與行為模式,為城市公共空間熱舒適性的設計,提供了不一樣的思維框架與實踐路徑,整體而言這套從數據分析到 VR 應用的知識轉譯流程,展現了如何以軟性介入城市公共空間調適,影響使用者的行為與認知的同時將線索呈現給設計者。
Global climate change and urban heat island effects are worsening, threatening the comfort and safety of outdoor activities. This study uses image recognition and microclimate simulation tools to propose a framework for understanding the relationship between the physical environment and human behavior. Autodesk Insight simulates solar radiation per unit area, converting physical parameters into thermal comfort indices. These indices are combined with behavioral data from CCTV footage, where image recognition transforms and calibrates the data into metrics like activity paths and stay zones. The analysis highlights how microclimate variations influence human behavior.
Based on this research, a VR game called Shadow Drift was developed to combine educational and interactive elements, enhancing public awareness and engagement in climate adaptation actions. The game visualizes microclimate and behavioral data within immersive virtual environments. By incorporating real microclimate simulation results, participants can intuitively observe how microclimate changes influence their behavior. Additionally, players can modify the thermal comfort of the environment by selecting and planting trees with varying height-to-width ratios. This process encourages reflection on the relationship between spatial design and thermal comfort while deepening understanding of these issues.
Moreover, this platform serves as a novel tool for designers, offering insights into user preferences and behavioral patterns. It provides a framework and practical pathway for designing urban public spaces with improved thermal comfort. This comprehensive knowledge translation process, from data analysis to VR application, demonstrates how soft interventions in urban public space adaptation can influence user behavior and cognition while delivering actionable insights to designers.
Alami, S., & Hanoune, M. (2022). Virtual Reality as a Powerful Persuasive Technology to Change Attitude During the Spread of COVID-19. In Lecture Notes in Networks and Systems: Vol. 508 LNNS. https://doi.org/10.1007/978-3-031-10467-1_7
Davies, A. R., & Hügel, S. (2021). Just Adapt: Engaging Disadvantaged Young People in Planning for Climate Adaptation. Politics and Governance, 9(2), 100–111. https://doi.org/10.17645/pag.v9i2.3892
Elnabawi, M. H., & Hamza, N. (2020). Behavioural perspectives of outdoor thermal comfort in urban areas: A critical review. Atmosphere, 11(1), 1–23. https://doi.org/10.3390/atmos11010051
Escandón, R., Suárez, R., Alonso, A., & Mauro, G. M. (2022). Is indoor overheating an upcoming risk in southern Spain social housing stocks? Predictive assessment under a climate change scenario. Building and Environment, 207, 108482. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108482
Fernández Galeote, D., Zeko, C., Volkovs, K., Diamant, M., Thibault, M., Legaki, N.-Z., Rajanen, D., Rajanen, M., & Hamari, J. (2022). The Good, the Bad, and the Divergent in Game-based Learning: Player Experiences of a Serious Game for Climate Change Engagement. Proceedings of the 25th International Academic Mindtrek Conference, 256–267. https://doi.org/10.1145/3569219.3569414
Gherri, B. (2018). Early-Stage Environmental Modeling: Tools and Strategies for Climate Based Design. https://doi.org/10.13140/RG.2.2.19029.47842
Gillespie, G. L., Farra, S., Regan, S. L., & Brammer, S. V. (2021). Impact of immersive virtual reality simulations for changing knowledge, attitudes, and behaviors. Nurse Education Today, 105. https://doi.org/10.1016/j.nedt.2021.105025
Gonzalez Rojas, P. (2017). Space and Motion: Data-Driven Model of 4D Pedestrian Behavior. 266–273. https://doi.org/10.52842/conf.acadia.2017.266
Hou, J., Chen, L., Zhang, E., Jia, H., & Long, Y. (2020). Quantifying the usage of small public spaces using deep convolutional neural network. PLOS ONE, 15(10), e0239390. https://doi.org/10.1371/journal.pone.0239390
Leal Filho, W., Hurlbert, M. A., & Diaz, H. (2016). Climate adaptation governance - theory, concepts, and praxis in cities and regions. The role of climate and water governance in supporting climate change adaptation processes. In Climate Adaptation Governance in Cities and Regions: Theoretical Fundamentals and Practical Evidence. https://doi.org/10.1002/9781118451694.ch9
Mavrogianni, A., Taylor, J., Davies, M., Thoua, C., & Kolm-Murray, J. (2015). Urban social housing resilience to excess summer heat. Building Research & Information, 43(3), 316–333. https://doi.org/10.1080/09613218.2015.991515
McGinity, M. (2018). Immersive media for environmental awareness. 2018 IEEE Workshop on Augmented and Virtual Realities for Good, VAR4Good 2018. https://doi.org/10.1109/VAR4GOOD.2018.8576891
Patt, A. (2013). Climate risk management: Laying the groundwork for successful adaptation. In Successful Adaptation to Climate Change: Linking Science and Policy in a Rapidly Changing World. https://doi.org/10.4324/9780203593882-22
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/CVPR.2016.91
Reinhart CF. (2012). Daylighting course lectures. Massachusetts Institute of Technology.
Restrepo-Mieth, A., Perry, J., Garnick, J., & Weisberg, M. (2023). Community-based participatory climate action. Global Sustainability, 6. https://doi.org/10.1017/sus.2023.12
Thoma, S. P., Hartmann, M., Christen, J., Mayer, B., Mast, F. W., & Weibel, D. (2023). Increasing awareness of climate change with immersive virtual reality. Frontiers in Virtual Reality, 4. https://www.frontiersin.org/journals/virtual-reality/articles/10.3389/frvir.2023.897034
Wang, L., & He, W. (2023). Analysis of Community Outdoor Public Spaces Based on Computer Vision Behavior Detection Algorithm. Applied Sciences (Switzerland), 13(19). https://doi.org/10.3390/app131910922
Weller, R., Cepok, J., Arzaroli, R., Marnholz, K., Große, C. S., Reuter, H., & Zachmann, G. (2022). Effects of immersion and navigation agency in virtual environments on emotions and behavioral intentions. Frontiers in Virtual Reality, 3. https://www.frontiersin.org/journals/virtual-reality/articles/10.3389/frvir.2022.893052
Wienrich, C., Döllinger, N., & Hein, R. (2021). Behavioral Framework of Immersive Technologies (BehaveFIT): How and Why Virtual Reality can Support Behavioral Change Processes. Frontiers in Virtual Reality, 2. https://www.frontiersin.org/journals/virtual-reality/articles/10.3389/frvir.2021.627194
Yan, C., Li, T., Liu, S., He, S., Zhang, L., Wen, S., An, Y., Wang, W., & Long, Y. (2024). REVISITING WILLIAM H. WHYTE’S DIAGRAM: An interactive video-tracking method for modelling spatiotemporal human behaviours within dynamic zoning geometries. Proceedings of the International Conference on Computer-Aided Architectural Design Research in Asia, 2, 445–454. https://doi.org/10.52842/conf.caadria.2022.2.445
Yan, W. (2006). Integrating Video Tracking and Virtual Reality in Environmental Behavior Study. 483–488. https://doi.org/10.52842/conf.acadia.2006.483
井上拓央, 柴戸未來, 木村達之, 真鍋陸太郎, 後藤智香子, 村山顕人, & 小泉秀樹. (2019). 画像認識を活用した都市調査手法の確立に向けて. 都市計画報告集, 18(2), 189–192. https://doi.org/10.11361/reportscpij.18.2_189
吳宜臻. (2025). 建築與植栽的遮蔭特性整合評估與應用. 成功大學 建築學系碩士論文.
歐星妤. (2021). 戶外遮蔽設施方位與尺寸對熱舒適影響之研究. 成功大學 建築學系碩士論文.
簡琳儒. (2020). 影像辨識涵構察覺應用於群眾行為之空間關聯性探討-以台中文華路為例. 成功大學 建築學系碩士論文.
林子安. (2024). 基地遮蔭策略下的簡易熱輻射降溫評估模式建構. 成功大學 建築學系碩士論文.
林瑞浤. (2024). 主動式BIM: 結合電腦視覺與數位雙生的場域人流管理系統. 成功大學 建築學系碩士論文.
魏育瑛. (2024). 喬木遮蔭程度對人體熱舒適的影響及建立應用評估工具. 成功大學 建築學系碩士論文.
國家災害防救科技中心(NCDR)氣候變遷專案組與 TCCIP 研究團隊. (2018). 全台歷史重建資料(TReAD)報告 (2011-2018). 成功大學 BCLab 研究團隊.
校內:2028-06-06公開