簡易檢索 / 詳目顯示

研究生: 陳立升
Chen, Lih-Sheng
論文名稱: 快速加熱爐中晶圓有效放射率的蒙地卡羅模擬
Monte Carlo Modeling for Effective Emissivity in RTP Furnace
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 78
中文關鍵詞: 快速熱處理晶圓有效放射率
外文關鍵詞: effective emissivity of wafer, RTP, rapid thermal processing
相關次數: 點閱:112下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以研究300mm晶圓在快速熱處理爐內的晶圓有效放射率為目的,考慮中山科學研究院正在發展中的快速熱處理機台腔體內的熱傳,本文以蒙地卡羅法(MCM)計算加熱燈、腔體及晶圓之間的熱輻射交換,其結果再結合晶圓有效放射率之定義,以求得快速熱處理過程中晶圓有效放射率隨晶圓徑向位置之分佈,然後以相關文獻及有效放射率的定義加以分析、探討。
      我們由模擬結果得知:當反射盤放射率較小時,晶圓有效放射率與實際晶圓放射率之差距也較大。此時,反射盤反射率較大,亦即反射盤的反射增強晶圓放射率對於晶圓有效放射率的影響。當晶圓放射率較低時,由於被晶圓下表面反射之加熱燈入射通量與晶圓黑體放射功率之比率較大的原因,加熱燈入射通量的影響不僅明顯,且影響較大之徑向位置亦有往中心(r= 0m)移動的現象。同樣地,隨著晶圓與保護環間隙由0.003m~0.0001m逐漸減少時,在實際加熱過程中,所有表面入射通量對於晶圓有效放射率之影響較大的徑向位置,有往晶圓外緣靠近的趨勢。

      The purpose of this research is to examine the effective emissivity of a 300mm wafer in rapid thermal processing (RTP). The heat transfer in the RTP furnace chamber under development at CSIST is considered. This study adopts the Monte Carlo Method (MCM) to calculate radiative heat exchange among the chamber, the lamps and the wafer. Then combining the above result into the definition of effective emissivity of wafer, we obtain the effective emissivity distribution versus radial positions on wafer. Other definitions of effective emissivity in the literatures are also investigated.
      The simulation results show that as follow: when the emissivity of reflector is lower, the differences between the effective emissivity of wafer and the intrinsic emissivity of wafer is higher. At this time, the reflectivity of reflector is greater than the wafer, and it enhanced the influence of effective emissivity versus intrinsic emissivity of wafer. Otherwise, when the emissivity of wafer is lower, the reflected irradiation of heating lamps by the bottom surface of wafer is greater than blackbody emissive power of the wafer. The influence of the irradiation is not only obvious, but also the position to the range of higher influence in radial direction has the ambulatory phenomenon toward center (r= 0m). Similarly, by the gap between wafer and guard ring reduced from 0.003m to 0.0001m gradually, the position in radial direction to the effect of versus irradiation of all surfaces in the RTP enclosure has the trend of going toward outside wafer.

    中文摘要...................................................i 英文摘要..................................................ii 誌謝......................................................iv 目錄......................................................v 表目錄...................................................vii 圖目錄..................................................viii 符號說明.................................................xiv 第一章 緒論.............................................1 1-1 研究背景與文獻回顧...................................1 1-2 研究目的..............................................4 1-3 本文架構.............................................4 第二章 物理模式..........................................5 2-1 求加熱燈與腔體各表面之輻射熱通量的模擬(模式一).......5 2-2 求晶圓有效放射率的模擬(模式二)........................6 第三章 數值方法................................10 3-1 蒙地卡羅法模擬輻射熱傳.........................10 3-2 有效放射率的求解方式...........................16 第四章 結果與討論....................................18 4-1 光包數測試與影響....................................18 4-2 晶圓放射率對於晶圓有效放射率的影響................19 4-3 反射盤反射率對於晶圓有效放射率的影響.................20 4-4 晶圓放射率及反射盤放射率與量測點位置的關係..........20 4-5 模擬光管輻射溫度計量測晶圓有效放射率 的結果..........21 4-6 加熱燈入射通量的影響............................22 4-7 實際加熱過程中晶圓與保護環間隙 對於晶圓有效放射率之影響......................................23 第五章 結論與展望........................................25 5-1 結論...........................................25 5-2 展望.................................................27 參考文獻..................................................29 自述...................................................78

    1.P. J. Timans, 1998, “Rapid thermal processing technology for the 21st century,” Materials Sience in Semiconductor Processing, 1, pp. 169-179.

    2.Z. M. Zhang, 2000, “Surface temperature measurement using optical techniques,” Annual Review of Heat Transfer, 11, Begell House, New York, pp. 351-411.

    3.侯明鋒, 2003,“快速熱處理時的晶圓溫度均勻性”, 國立成功大學機械工程研究所碩士論文

    4.D. H. Chen, D. P. DeWitt, B. K. Tsai, K. G. Kreider and W. A. Kimes, 2002, “Effects of wafer emissivity on rapid thermal processing temperature measurement,” 10th IEEE International Conference on Advanced Thermal Processing of Semiconductors-RTP 2002, pp. 59-67.

    5.Y. H. Zhou, Z. M. Zhang, D. P. DeWitt, and B. K. Tsai, 2001, “Effects of radiative properties of surfaces on radiometric temperature measurement,” 9th International Conference on Advanced Thermal Processing of Semiconductors-RTP 2001, pp. 179-188.

    6.Y. H. Zhou, Y. J. Shen, Z. M. Zhang, B. K. Tsai, and D. P. DeWitt, 2002, “A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid themal processing furnaces,” International Journal of Heat and Mass Transfer, 45, pp. 1945-1949.

    7.Y. H., Zhou, and Z. M., Zhang, 2003, “Radiative properties of semitransparent silicon wafers with rough surfaces,” Transactions of the ASME, 125, pp. 462-470.

    8.Z. Chu, J. Dai, R. E. Beford, 1992, “Monte Carlo solution for the directional effective emissivity of a cylindro-inner cone,” Temperature, Its Measurement and Control in Science and Industry, 6, pp. 907-912.

    9.M. Modest, 1993, Radiative Heat Transfer, Academic Press, New York.

    10.D. P. DeWitt, F. Y. Sorrell, and J. K. Elliott, 1997, “Temperature measurement issues in rapid thermal processing,” Materials Research Society, 470, pp. 3-15.

    11.B. K. Tsai, and D. P. DeWitt, 1999, “ITS-90 Calibration of radiometers using wire/thin-film thermocouples in the NIST RTP tool: effective emissivity modeling,” the 7th International Conference on Advance Thermal Processing of Semiconductors, pp. 125-135.

    12.C. W. Meyer, D. P. DeWitt, K. G. Kreider, F. J. Lovas, and B. K. Tsai, 1999, “ITS-90 Calibration of radiometers using wire/thin-film thermocouples in the NIST RTP tool: experimental procedures and results, ” the 7th International Conference on Advance Thermal Processing of Semiconductors, pp. 136-141.

    13.B. K. Tsai, D. P. DeWitt, F. J. Lovas, K. G. Kreider, C. W. Meyer, D. W. Allen, 1999, “Effects of extraneous radiation on the performance of lightpipe radiation thermometers,” NIST technical report.

    14.B. Ryan, T. Norman, W. Chang, T. Leong, T. Green, 2002, “Integrating world-class radiance RTP technology onto a low cost of ownership production-worthy platform,” 10th IEEE International Conference on Advanced Thermal Processing of Semiconductors-RTP 2002, pp. 35-38.

    15.Semiconductor Industry Association, 1999, The International Technology Roadmap for Semiconductors, Austin, TX, International SEMETECH.

    16.紀崇仁, 2002,“晶圓快速熱處理模擬”, 國立成功大學機械工程研究所碩士論文

    17.王振源及吳志陽, 2001,“快速熱處理機台即時溫度量測系統最佳化設計”,機械關鍵系統技術研究發展第二期三年計劃, 中山科學研究院

    18.V. E. Borisenko, P. J., Hesketh, 1997, Rapid thermal processing of semiconductors, Plenum Press, New York.

    19.M. Q. Brewster, 1992, Thermal Radiative Transfer and Properties, John Wiley, New York.

    20.R. Siegel and J. R. Howell, 2002, Thermal Radiation Heat Transfer, Taylor & Francis, New York.

    21.C. P. Yin, C. C. Hsiao, T. F. Lin, 2000, “Improvement in wafer temperature uniformity and flow pattern in a lamp heated rapid thermal processor,” Journal of Crystal Growth, 217, pp. 201-210.

    下載圖示 校內:2005-08-02公開
    校外:2005-08-02公開
    QR CODE