簡易檢索 / 詳目顯示

研究生: 蘇靖棻
Su, Chin-Fen
論文名稱: 姬蝴蝶蘭花色形成相關基因之鑑定
Identification of flower color related genes of Phalaenopsis equestris
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 87
中文關鍵詞: 姬蝴蝶蘭相關基因花色
外文關鍵詞: flower color, related genes, Phalaenopsis equestris
相關次數: 點閱:71下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是從表現序列標誌資料庫(expressed sequence tags, EST database)篩選出姬蝴蝶蘭(Phalaenopsis equestris)之花青素合成的相關基因。目前已建立之EST database乃為紅花橘心姬蝴蝶蘭花苞之cDNA library,並逢機定序後所建立之EST database。自此EST database中,我們找到五個與花色合成的相關基因,包括chalcone synthase (CHS)、chalcone-flavanone isomerase (CHI)、anthocyanidin synthase (ANS) 、flavonoid 3’-hydroxylase (F3’H)、及UDP-glucose: flavonoid 3-O- glucosyltransferase (UFGT),其中除了CHS已得到全長外,其餘的基因則以RACE技術來得到基因序列全長,並進行多序列分析及親緣演化分析。我們利用北方雜合分析確認五個基因在四種不同花色的花苞中表現的差異性,包括紅花紅心、紅花橘心、白花黃心、以及白花白心的姬蝴蝶蘭,均為以紅花橘心姬蝴蝶蘭(P. equestris) ’W9-52’ 為母本,白花白心姬蝴蝶蘭(P. equestris) ‘W9-17’ 為父本所進行雜交後之F2子代。結果顯示這五個基因在四種不同的花色之花苞中的基因表現並無明顯的差異。為確認是否有點突變發生在CHS、CHI、ANS基因上,進而導致花色之差異,我們亦從四種不同花苞中,以RT-PCR方法增殖出CHS、CHI、ANS等基因之cDNA,經定序後分別進行核苷酸與胺基酸的多序列比對,結果發現這四種花苞中的CHS、CHI、ANS等基因,在核苷酸與胺基酸的不同位置皆有差異。進一步進行這些酵素蛋白後修飾區域的預測,發現在紅花橘心、白花黃心、白花白心之CHS胺基酸的第134-137位置有磷酸化現象,而在紅花紅心則沒有;在紅花紅心、白花黃心、白花白心之CHS胺基酸的第227-230位置有磷酸化現象,而在紅花橘心則沒有。另外,我們發現在四種不同花色之CHI與ANS基因蛋白後轉譯修飾作用,並未有差異。不過,這樣的結果仍需日後的實驗來加以確認.

    This research was to study the flower color related genes from expressed sequence tags (ESTs) database involved in anthocyanin synthesis pathway in Phalaenopsis equestris. The EST database of P. equestris was established from 3,549 randomly sequenced clones of cDNA library. Five enzymes involved in anthocyanin pathway, including chalcone synthase (CHS), chlacone-flavanone isomerase (CHI), anthocyanidin synthase (ANS), flavonoid 3’-hydroxylase (F3’H), and UDP-glucose: flavonoid 3-O- glucosyltransferase (UFGT) genes were identified. The expression patterns of these five genes in four different color sets of the flower buds of P. equestris were analyzed with northern blot hybridization. Four F2 progenies of red flower-red lip, red flower-orange lip, white flower-yellow lip, and white flower-white lip derived from the F1 selfcross of the ‘W9-52’ x ‘W9-17’ were used as materials. Results showed that there was no differential expression pattern among the flower buds of the four types of P. equestris. To determine whether there is any point mutation occurred in CHS, CHI, and ANS genes among the four different flower buds, RT-PCR was carried out. Results showed that single nucleotide polymorphisms (SNPs) were observed in CHS, CHI, and ANS genes among the four different flower buds. The prediction of posttranslation modification site of each CHS, CHI, and ANS genes among the four color flower buds were also analyzed. Results showed that no differential posttranslational modification was observed in both CHI and ANS cDNA sequences. Whereas, differential phosphorylation patterns may have occurred in CHS genes of the four flower buds. However, this needs to be confirmed by further experiments.

    第一章、 前言…………………………………………………………………..…...…… 1 第二章、 文獻探討………………………………………………...……..………………2 1.蝴蝶蘭………………………………………………………………..…...………...….2 1.1簡介…………………………………………………………….…………………..2 1.2形態…………………………………………………………….….………………..2 1.2.1莖……………………………………………………….……..……………..2 1.2.2根…………………………………………………………………..………...2 1.2.3葉…………………………………………………………….………..……..2 1.2.4花朵……………………………………..……………….…………………..2 1.3生長習性…………………………………………...………….…………………...3 1.4分布…………………………………………...….…………….…………………..3 1.5蝴蝶蘭簡介…………………………………………………….…………………..3 2.植物花色……………………………………………...…………….………………….4 2.1重要性……………………………………………………...………………………4 2.2花青素合成途徑……………………………………...……………………………4 2.3花青素合成的調控機制…………………………………………...………………5 2.3.1轉錄方面的調控機制…………………………………...…………………..5 2.3.2後轉路方面的調控機制…………………………………...………………..6 2.3.3液泡中pH值的影響…………………………………………………………6 2.4利用分子育種改變花色成功的例子………………………….…………………..7 第三章、 材料與方法……………………….………………………….………………...8 1.實驗材料……………………………………………………………………………...8 2.實驗方法……………………………………………………………………………..8 2.1萃取總RNA……………………………………………………………………..8 2.2 RNA電泳………………………………………………………………………..9 2.3 5’RACE…………………………………………………………..………….…..9 2.3.1製備第一股cDNA………………………………………………………..9 2.3.2 5’端cDNA製備…………………………………………………………..9 (1) 第一次PCR反應……………………………………………………….9 (2) 第二次PCR反應………………………………….…………………..10 2.4自洋菜膠回收DNA片段………………………………………………………10 2.5 DNA定序…………………………………………………….………………...11 2.5.1質體接合………………………………………….…….…………….….11 2.5.2 Transformation (Heat Shock) ………………………...………………….11 2.5.3微量製備量質體…………………………………………………………11 2.5.4 DNA自動定序……………………………………...………………..….12 2.5.4.1 Big Dye反應………………………………….……………………..12 2.5.4.2酒精沉澱…………………………………………….……….……...12 2.6電腦輔助序列分析…………………………………………………………....12 2.6.1序列比對…………………..……………………………………………...13 2.6.2多序列比對及親源演化分析…………………………………….……..13 2.7北方雜合………………………………...………………….…………………13 2.7.1探針的製備…………………………………………….………………..13 2.7.2探針品質的測定………………………………………………………...13 2.7.3北方雜合反應…………………………………………………………...13 2.8萃取植物染色體DNA………………………………………………………..14 2.9南方雜合法……………………………………………………………..……..15 2.9.1探針的製備………………………………………………………….…..15 2.9.2探針品質的測定………………………………………………….……..15 2.9.3南方雜合反應……………………………………….…………………..15 第四章、 結果………………………………………………………….………………..16 1.從姬蝴蝶蘭EST database中,鑑別參與花青素合成之酵素………………….……16 2.紅花橘心姬蝴蝶蘭之CHS、CHI、ANS全長序列的分析….………………………16 2.1 CHS基因…………………………………………..…………...…..…………..16 2.2 CHI與ANS基因………………………….……………………..……………....16 2.2.1 CHI基因之5’端增殖反應(5’ Rapid amplication cDNA end, RACE)…...17 2.2.2 ANS基因之5’端增殖反應(5’ Rapid amplication cDNA end, RACE)…..17 3.紅花橘心基蝴蝶蘭之CHS、CHI、ANS進行多序列比對………………………….18 3.1 CHS基因……………………………………………………………………..…...18 3.2 CHI基因…...…………………………...…………………………………………18 3.3 ANS基因……...……...………………...…………………………………………19 4.姬蝴蝶蘭之CHS、CHI、ANS與其他植物間親源演化分析………………….……19 4.1 CHS基因...……………………...…………………………………………..…….19 4.2 CHI基因....………………………………...………………………………..…….20 4.3 ANS基因...…………………………………………...……………………..…….20 5.參與花青素合成的酵素,在不同花色姬蝴蝶蘭中的表現情形…………………….20 5.1參與花青素合成之基因的回收………………………………………………….20 5.2北方雜合(Northern hybridization)………………………………………………..20 6.四種不同花色之姬蝴蝶蘭CHS、CHI、ANS之單一核苷酸多型性(single nucleotide polymorphism, SNP)的分析……………………………………………………………21 6.1 CHS基因………………………………………………………………………….21 6.1.1四種不同花色之CHS cDNA的取得……………………………………...21 6.1.2四種不同花色之CHS核苷酸序列的分析………………………………...21 6.2 CHI基因…………………………………………………………………………..22 6.2.1四種不同花色之CHI cDNA的取得………………………………………22 6.2.2四種不同花色之CHI核苷酸序列的分析…………………………………22 6.3 ANS基因……………………………………………...…………………………..22 6.3.1四種不同花色之ANS cDNA的取得………………………………………22 6.3.2四種不同花色之ANS核苷酸序列的分析…………………………...……23 7.四種不同花色之姬蝴蝶蘭CHS、CHI、ANS蛋白質後修飾作用的預測…………23 7.1 CHS基因………………………………………………………………………….23 7.2 CHI、ANS基因…….……………………………………………………………..24 8.利用南方墨渍法分析CHS基因在姬蝴蝶蘭中的拷貝數目(copy number)………24 第五章、 討論……………………………………………………………….…………..25 1.從姬蝴蝶蘭EST database中,鑑別參與花青素合成之酵素……………………….25 2.紅花橘心姬蝴蝶蘭之CHS、CHI、ANS胺基酸與其他植物間之多序列比對與親源演化分析……………………………………………………………………...………...25 3. CHS基因在姬蝴蝶蘭中的拷貝數目(copy number)………………………………...26 4.參與花青素合成的酵素,在不同花色姬蝴蝶蘭中的表現情形…………………….27 5.四種不同花色之姬蝴蝶蘭CHS、CHI、ANS單一核苷酸多型性(SNP)分析……...28 6.四種不同花色之姬蝴蝶蘭CHS、CHI、ANS蛋白質後修飾作用的預測………….29 7.結語…………………………………………………………………………...………30 第六章、 參考文獻……………………………………………………………………...31 表目錄 表一、從紅花橘心姬蝴蝶蘭(P. equestris) EST database中,利用blastx比對後,搜尋到參與花青素合成的基因…………………………………………….………...37 表二、本論文中所使用的引子(primer)…………………………….…….………..…...38 表三、紅花橘心姬蝴蝶蘭之CHS基因與其他植物之CHS基因間的相似度…………………………………………………………...…………….………39 表四、紅花橘心姬蝴蝶蘭之CHI基因與其他植物之CHI基因間的相似度………………………………………………………...……………………….41 表五、紅花橘心姬蝴蝶蘭之ANS基因與其他植物之ANS基因間的相似度……………………………………………………………………..….……….42 表六、紅花紅心、紅花橘心、白花黃心、白花白心四種花色之姬蝴蝶蘭CHS cDNA核苷酸序列,經多序列比對後,呈現差異之核苷酸部分……………………………………………………………………..…………..43 表七、紅花紅心、紅花橘心、白花黃心、白花白心四種花色之姬蝴蝶蘭CHI cDNA核苷酸序列,經多序列比對後,呈現差異之核苷酸部分…………………………………………………………………………………44 表八、紅花紅心、紅花橘心、白花黃心、白花白心四種花色之姬蝴蝶蘭ANS cDNA核苷酸序列,經多序列比對後,呈現差異之核苷酸部分…………………………………………………………………………………46 表九、四種不同花色之CHS胺基酸序列送入Prosite,進行胺基酸上後修飾作用區域的分析……………………………………………………………………………48 表十、四種不同花色之CHS胺基酸序列上後修飾作用區域差異的部分…………..49 表十一、四種不同花色之CHI胺基酸序列送入Prosite,進行胺基酸上後修飾作用區域的分析……………………………………………………….………………50 表十二、四種不同花色之ANS胺基酸序列送入Prosite,進行胺基酸上後修飾作用區域的分析……………………………………..………………………….…..51 圖目錄 圖一、紅花橘心姬蝴蝶蘭CHI序列RACE 結果………………………………….……52 圖二、回收CHI第二次RACE增殖反應的DNA片段……………………………….53 圖三、pGEM-T Easy/CHI質體經EcoRI切割後的結果……………………………….54 圖四、紅花橘心姬蝴蝶蘭ANS序列RACE 結果……………………………………..55 圖五、回收ANS第二次RACE增殖反應的DNA片段……………………………….56 圖六、pGEM-T Easy/ANS質體經EcoRI切割後的結果………………………………57 圖七、姬蝴蝶蘭與其他植物的CHS胺基酸間的多序列比對結果……………………58 圖八、姬蝴蝶蘭與其他植物的CHI胺基酸間的多序列比對結果…………………….61 圖九、姬蝴蝶蘭與其他植物的ANS胺基酸間的多序列比對結果……………………63 圖十、姬蝴蝶蘭與其他植物的CHS基因間親源演化分析結果….…………………..66 圖十一、姬蝴蝶蘭與其他植物的CHI基因間親源演化分析結果…………………….67 圖十二、姬蝴蝶蘭與其他植物的ANS基因間親源演化分析結果…………………….68 圖十三、參與花青素合成之基因cDNA片段的回收……………..…….……………..69 圖十四、北方雜合反應結果……………………………………….…………………….70 圖十五、四種不同花色之CHS基因RT-P CR結果……………………………………71 圖十六、pGEM-T Easy/CHS接合質體,經EcoRI切割後的結果……………………72 圖十七、四種不同花色之CHS核苷酸多序列比對結果………………………………73 圖十八、四種不同花色之CHI基因RT-P CR結果.….………………………………..75 圖十九、pGEM-T Easy/CHI接合質體,經EcoRI切割後的結果.……………………76 圖二十、四種不同花色之ANS基因RT-P CR結果…..……….………………………77 圖二十一、pGEM-T Easy/ANS接合質體,經EcoRI切割後的結果….……………..78 圖二十二、CHS基因南方雜合反應結果……………………………………………….79 附圖目錄 附圖一、花青素合成的相關途徑…………………………………….………………..80 附圖二、紅花紅心、紅花橘心、白花黃心、以及白花白心姬蝴蝶蘭F2子代(S82-159)…………………………………………………………...….……...81 附圖三、紅花紅心、紅花橘心、白花黃心、以及白花白心姬蝴蝶蘭F2子代(S82-159)之不同花苞時期………………………………………………………..…...…82 附圖四、pGEM-T Easy質體…………………………………………………………..…83 附圖五、pGEM-T Easy/CHS質體………………………………………………………84 附圖六、pBluescript II SK +/-質體………………………………………………………85 附圖七、pGEM-T Easy/CHI質體……………………………………………………….86 附圖八、pGEM-T Easy/ANS質體……………………………………………..………..87

    歐陽雲。1988。洋蘭之美。藝術圖書公司。
    尤崇魁。1989。洋蘭百科。園藝世界出版。
    廖敏卿。1990。蝴蝶蘭栽培。
    劉吉昌。1998。姬蝴蝶蘭花色相關基因片段之篩選。國立成功大學生物學研究所。
    陳文輝。2002。科學月刊:351期; pp. 32-38。
    1Aida, R. Kishimoto, S., Tanaka, T., and Shibata, M. (2000). Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci. 153, 33-42.
    2Aida, R., Yoshida, K., Kondo, T., Kishimoto, S., and Shibata, M. (2000). Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-rductase gene. Plant Sci. 160, 49-56.
    Almeida, J., Carpenter, R., Robins, T. P., Martin, C., and Coen, E. S. (1989). Genetic interactions underlying flower color patterns in Antirrhinum majus. Genes Dev. 3, 1758-1767.
    Asen, S., Stewart, R.N., and Norris, K.H. (1977). Anthocyanin and pH involved in the color of ‘Heavenly Blue’ morning glory. Phytochemistry 16: 1118-1119.
    Beld, M., Martin, C., Huits, H., Stuitje, A. R., and Gerats, A. G. M. (1989). Flavonoid synthesis in Petunis hybrida: Partial characterization of dihydroflavonol 4-reductase genes. Plant Mol. Biol. 13, 491-502.
    Brugliera, F., Barri-Rewell, G., Holton, T., and Mason, J., (1999). Isolation and characterization of a flavonoid 3’-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. 19, 441-451.
    Chandler, V. L., Radicella, J. P., Robbins, T. P., Chen, J., and Turks, D. (1989). Two regulatory genes of the maize anthocyanin pathway are homologous: Isolation of B utilizing R genomics sequences. Plant Cell 1, 1175-1183.
    Chen, X.G., and Poretz, R.D., (2001). Lead causes human fibroblasts to mis-sort arylsulfatase A. Toxicology 163: 107-114.
    Christenson, E. A. (2001). Phalaenopsis: A Monograph. pp. 24-25, Timber Press, Portland, Oregon.
    Coe, E.H., McCormick, S., and Modena, S.A. (1981). White pollen in maize. J. Hered. 72, 318-320.
    Cone, K. C., Burr, F. A., and Burr, B. (1986). Molecular analysis of the maize regulatory locus C1. Proc. Natl. Acad. Sci. USA 83, 9631-9635.
    Dressler, R. L. (1981). The Orchids. Harvard University Press, Cambridge. Mass., London.
    Dooner, H. K. (1983). Co-ordinate genetic regulation of flavonoid biosynthetic enzymes in maize. Mol. Gen. Genet. 189, 136-141.
    Dooner, H. K. (1991). Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25, 173-199
    Fedoroff, N. V., Furtek, D. B., and Nelson, O. E. (1984). Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc. Natl. Acad. Sci. USA 87, 3825-3829.
    Forkman, G. (1993). In the flavonoids: advances in research since 1986, ed. Harborne, J. B. (Chapman & Hall, London), pp. 537-564.
    Forkmann, G., and Martens, S., (2001). Metabolic engineering and applications of flavonoids. Curr. Opin. Biotech. 12: 155-160.
    Fu, Y. M., Chen, W. H., Tsai, W. T., Hsieh, R. M., Lin, Y. S., Chyou, M. S., and Wu, C. C. (1996). Studies on floral color heredity of Phalaenopsis equestris. Report Taiwan Sugar Res. Inst. 152: 35-49.
    Goodrich, J., Carpente, R., and Coen, E.S. (1992). A common gene regulates pigmentation pattern in diverse plant species. Cell 68: 955-964.
    Jackson, D., Roberts, K., and Martin, C. (1992). Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinum majus. Plant J. 2, 425-434.
    Koes, R. E., Spelt, C. E., and Mol, J. N. M. (1989). The chalcone synthase multigene family in Petunia hybrida (V30): Differential light-regulated expression during flower development and UV light induction. Plant Mol. Biol. 12, 213-225.
    Ludwig, S. R., Habera, L. F., Dellaporta, S. L., and Wessler, S. R. (1989). Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc homology region. Proc. Natl. Acad. Sci. USA 86, 849-851.
    Martin, C., Prescott, A., Mackay, S., Bartlett, J., and Vrijandt, E. (1991). Control of anthocyanin biosynthesis in flower of Antirrhinum majus. Plant J. 1, 37-49.
    Martin, C., and Gerats T. (1993). Control of pigment biosynthesis genes during petal development. Plant Cell 5, 1253-1264.
    Meyer, P., Heidmann, I., Forkmann, G., and Saedler, H. (1987). A new Petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677-678.
    Mol, J. N. M., Schram, A. W., de Vlaming, P., Gerats, A. G. M., Kreuzaler, F., Hahlbrock, K., Reif, H. J., and Veltkamp, E. (1983). Regulation of flavonoid gene expression in Petunia hybrida: Description and partial characterization of a conditional mutant in chalcone synthase gene expression. Mol. Gen. Genet. 192, 424-429.
    Mooney, M., Desnos, T., Harrison, K., Jones, J., Carpenter, R., and Coen, E. (1995). Altered regulation of tomato and tobacco pigmentation genes by the delila gene of Antirrhinum flowers. Plant J. 7: 333-339.
    Paz-Ares, J., Wienand, U., Peterson, P. A., and Saedler, H. (1986). Molecular cloning of the C locus of Zea mays. A locus regulating the anthocyanin pathway. EMBO J. 5, 829-833.
    Reimold, U., Kruger, M., Kreuzaler, F., and Hahlbrodk, K. (1983). Coding and 3’ non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J. 2, 1801-1805.
    Rafalski, A. (2002). Application of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5, 94-100.
    Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Okinaka, S., and Kikuchi, Y. (1999). Expression of chimeric P450 genes encoding flavonoid-3’,5’-hydroxylase in transgenic tobacco and Petunia plants. FEBS Lett. 461: 241-245.
    Shirley, B. W., Kubasek, W.L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F.M., and Goodman, H.M. (1995). Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8, 659-671.
    Sommer, H., and Saedler, H. (1986). Structure of the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 202, 429-434.
    Suzuki, K., Xue, H., and Tanaka, Y. (1997). Molecular breeding of flower colour of Torenia Hybrida. 5th Interactional Congress of Plant Molecular Biology. Singapore, September, 21-27.
    Toshio, Y., Sachiko, F.T., Yoshishige, I., Norio S., Keiko, Y.S., Yoshikazu, T., Takaaki, K., and Shigeru, I. (2001). Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 42 (5): 451-461.
    van der Meer, I. (1991). Regulation of flavonoid gene expression in Petunia hybrida. Ph.D. Thesis, Vrije University of Amsterdam.
    van Tunen, A. J., Koes, R. E., Spelt, C. E., van der Krol, A. R., Stuitje, A. F., and Mol, J. N. M. (1988). Cloning of two chalcone flavanone isomerase genes from Petunia hybrida: Coordinated, light-regulated and differential expression of flavonoid genes. EMBO J. 7, 1257-1263.
    Wienand, U., Sommer, H., Schwarz, Z., Shephard, N., Saedler, H., Kreuzaler, F, Ragg, H., Fautz, E., Hahlbrock, K., Harrison, B. J., and Peterson, P. A. (1982). A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations. Mol. Gen. Genet. 187, 195-201.
    Wienand, U., Weydemann, U., Niesbach-Klosgen, U., Peterson, P.A., and Saedler, H. (1986). Molecular cloning of the C2 locus of Zea mays, the gene coding for chalcone synthase. Mol. Gen. Genet. 203, 202-207.
    Yoshida, K., Kondo, T., Okazaki, Y. and Katou, K. (1995). Cause of blue petal colour. Nature 373: 291.

    下載圖示 校內:立即公開
    校外:2002-08-27公開
    QR CODE