簡易檢索 / 詳目顯示

研究生: 陶安麟
Tao, An-Lin
論文名稱: 高效率多星系衛星導航技術之完整分析及衛星選擇方法
Efficient Navigation with Multi-constellation GNSS: Comprehensive Analysis and Satellite Selection Method
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 170
中文關鍵詞: 多星系全球導航衛星系統衛星品質分析衛星選擇方法
外文關鍵詞: Multi-constellation GNSS, Satellite quality analysis, Satellite selection method
相關次數: 點閱:58下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在不久的將來,可以用來導航的衛星將超過150顆,假如能成功的整合這多星系全球導航衛星系統之衛星資訊,即可解決目前許多都市區域中因可視衛星不足而造成無法定位的情形,使用者的定位效能將大大的提升。美中不足的是,當使用者處於無遮蔽物之空曠環境時,可視衛星也將達到接近50顆的數量。同時要接收這麼多的衛星觀測量,也會對接收機造成巨大的演算負擔。為了保有多星系全球導航衛星系統的優勢,並同時減輕接收機演算負擔,本研究提出了一套新的演算法:優化之三角形(Tri-Angle Optimization ,TAO)衛星選擇法,此演算法能夠在現有之可視衛星終選擇較少的衛星,並在選擇的同時考慮各衛星之觀測量,以便能在使用較少的衛星狀態下,還能提供相同品質之定位精確度。

    本研究針對四種導航衛星系統利用實收之衛星訊號去分析以及驗證其效能(四套系統包含:全球定位系统、格洛納斯系統、北斗衛星導航系統以及準天頂衛星系統)。本論文之首要目標為建立各衛星導航系統誤差之間的檢查機制,並藉由分析實收的衛星訊號提供建議以及注意事項給想要整合多星系系統來定位的使用者。在這之後,本研究之第二目標為提供一個新的衛星選擇機制去降低接收多星系衛星時造成的演算負擔。本研究所使用的接收機為NovAtel FlexPak 6,所搭配的天線盤為NovAtel 703 GGG。為了完成此兩項重要的目標,本研究提出了三種品質分析方式,分別是:一、衛星資料品質分析;二、衛星訊號品質分析;三、衛星觀測量品質分析。利用此三大類分析方式去偵測導致異常結果發生的原因。本論文也呈現成功整合各系統後,單一星系和多星系之效能差異。分析項目有:一、可視衛星數量;二、衛星仰角分布;三、衛星幾合分布;四、衛星定位精確度;五、在不同環境之可用性分析。在此之後,本研究針對在選擇衛星上應該要注意的三個議題提出討論,此三個議題分別為:一、衛星幾合配置之影響;二、衛星觀測量誤差之影響;三、衛星選擇數量之影響。在分析完所有議題並做出結論後,本研究提出一套可以同時考慮所有議題之結論的TAO衛星選擇方式。本研究利用八天的資料,將所有可能出現的全球導航衛星組合加入驗證,以便分析TAO衛星選擇法的效能。使用衛星選擇法之效能分析項目包含:選衛星後幾合分布情形、選衛星後定位精確度、整體演算時間分析。最終,本研究所提出之TAO衛星選擇法能夠在維持相通精確度的前提下,節省了高於50%的接收機運算量。此研究結果將有助於讓多星系全球導航衛星系統更普遍的存在於一般大眾可使用之接收機中。

    The final objective of this research is to integrate multi-constellation Global Navigation Satellite System (GNSS) and reducing the computation load at the same time. This research utilizes actual satellite signal in space (SIS) data to evaluate four satellite navigation systems (GPS, QZSS, GLONASS, and BDS). The first objective of this dissertation is to establish an inspection method and provide suggestions to users who want to combine different satellite navigation systems for positioning. The second objective is to propose a satellite selection method to reduce the computation load due to the high number of satellites in multi-GNSS. The receiver used in this research is NovAtel FlexPak 6, and the antenna is NovAtel 703 GGG. With these objectives, this research starting from presents the integration results of multi-constellation GNSS, and compares the performance of stand-alone GNSS and various GNSS combinations. The analysis performance indicators are number of satellites in view, satellite elevation angle, satellite geometry distribution, positioning accuracy, and positioning availability under various mask angles. After that, this research provides three quality analysis methods, namely data quality analysis (DQA), signal quality analysis (SQA), and measurement quality analysis (MQA), for finding issues that cause anomalous results. After summarizing the results from these three methods, three important issues relate to satellite selection are then discussed. Namely the influences of satellite geometry, measurement error, and selected satellite number. Considering these issues, the TAO satellite selection algorithm is presented. This algorithm is verified for various satellite combinations using 8 days of SIS information to show overall performance. The analysis is divided into determining the constellation geometry distribution after satellite selection, determining positioning accuracy after satellite selection, and overall calculation time analysis. Compared to use all satellite to positioning, TAO is shown to maintain high positioning accuracy while reducing computation time of multi-GNSS positioning. The results of this research will help multi-constellation GNSS implementation in a commercial receiver and give general users the benefits of modern GNSS technology.

    摘要 I Abstract III 致謝 V Table of Contents VI List of Tables IX List of Figures XI CHAPTER 1 INTRODUCTION AND OVERVIEW 1 1.1 Introduction to Satellite Navigation Systems 1 1.2 Comparison of Satellite Constellations 9 1.3 Literature Review 14 1.4 Motivation and Objective 16 1.5 Dissertation Organization 19 CHAPTER 2 GNSS POSITIONING ALGORITHM AND PERFORMANCE ANALYSIS 21 2.1 GNSS Positioning Algorithms 21 2.1.1 Stand-alone GNSS positioning 26 2.1.2 Multi-GNSS positioning algorithm 28 2.1.3 Dilution of precision 33 2.2 GNSS Position Integration and Analysis 36 2.2.1 Number of in-view satellites 36 2.2.2 GNSS satellite elevation angle 39 2.2.3 GNSS constellation geometry 44 2.2.4 GNSS positioning accuracy 49 2.2.5 GNSS positioning availability for various mask angles 55 2.3 Summary 58 CHAPTER 3 GNSS SYSTEM QUALITY ANALYSIS 59 3.1 GNSS Data Quality Analysis 59 3.1.1 DQA1: Satellite Position Difference When Ephemeris is Updated 61 3.1.2 DQA2: Satellite Clock Correction Difference when Ephemeris is Updated 65 3.1.3 DQA3: Applicable Period for Ephemeris 68 3.1.4 DQA4: Satellite Position Difference between Almanac and Ephemeris 72 3.1.5 DQA Summary 75 3.2 GNSS Signal Quality Analysis 76 3.2.1 SQA1: Signal strength for various times and satellite elevation angles 77 3.2.2 SQA2: Signal continuity analysis 83 3.2.3 SQA3: Signal discontinuity analysis 86 3.2.4 SQA Summary 88 3.3 GNSS Measurement Quality Analysis 89 3.3.1 MQA1: Measurement stability analysis 91 3.3.2 MQA2: Error source analysis 95 3.3.3 MQA3: pseudorange residual analysis 103 3.3.4 MQA4: Klobuchar model pseudorange residual analysis 108 3.3.5 MQA Summary 110 3.4 Summary 111 CHAPTER 4 PROPOSED GNSS SATELLITE SELECTION ALGORITHM 112 4.1 Satellite Selection Issue 112 4.1.1 Selection issue 1: Satellite geometry 113 4.1.2 Selection issue 2: Measurement error 117 4.1.3 Selection issue 3: Number of selected satellites 120 4.2 Tri-Angle Optimization (TAO) satellite selection algorithm 122 4.2.1 Remove the unusual observation and unusual system 126 4.2.2 Near-optimal satellite geometric arrangement 133 4.3 Internal summary 142 CHAPTER 5 EXPERIMENT RESULT 143 5.1 Experiment setup 143 5.2 GNSS satellite selection 144 5.2.1 DOP value evaluation 145 5.2.2 Positioning accuracy evaluation 149 5.2.3 Calculation time evaluation 152 5.3 Internal summary 157 CHAPTER 6 DISCUSSION AND CONCLUSIONS 159 6.1 Discussion 159 6.2 Conclusions and Contributions 160 Reference 162 Publication List 169

    [1] B. Hofmann-Wellenhof, H. Lichtenegger and E. Wasle, GNSS--global navigation satellite systems: GPS, GLONASS, Galileo, and more, Springer Science & Business Media, 2007.
    [2] GPS-ICD, Global Positioning System Directorate Systems Engineering & Integration Interface Specification IS-GPS-200H, 2013.
    [3] GLONASS-ICD, Global Navigation Satellite System GLONASS, Interface Control Document, Navigational radio signal in bands L1, L2, Edition 5.1 Russian Institute of Space Device Engineering, 2008.
    [4] BDS-ICD, BeiDou Navigation Satellite System Signal In Space Interface Control Document. Open Service Signal (Version 2.0). China Satellite Navigation Office, 2013.
    [5] IS-QZSS, Interface Specification for QZSS, Quasi-Zenith Satellite System Navigation Service, version 1.6, Japan Aerospace Exploration Agency, 2014.
    [6] IRNSS-ICD, "Indian Regional Navigation Satellite System Signal in Space Interface Control Document for Standard Positioning Service," 2014.
    [7] Y.-C. Chao, Real time implementation of the wide area augmentation system for the global positioning system with an emphasis on Ionospheric modeling, Department of Aeronautics and Astronautics Thesis, Stanford University, 1997.
    [8] P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance Second Edition, Lincoln, MA: Ganga-Jamuna Press, 2006.
    [9] B. Belabbas, A. Hornbostel, M. Sadeque and H. Denks, "Accuracy study of a single frequency receiver using a combined GPS/GALILEO constellation," in ION GNSS 2005, 2005.
    [10] A. Constantinescu and R. J. Landry, "GPS/Galileo/GLONASS hybrid satellite constellation simulator-GPS constellation validation analysis," in The Institute of Navigation 61st Annual Meeting, 2005.
    [11] K. O'Keefe, S. Ryan and G. Lachapelle, "Global availability and reliability assessment of the GPS and Galileo global navigation satellite systems," Canadian aeronautics and space journal, vol. 48, no. 2, pp. 123--132, 2002.
    [12] F. Wu, N. Kubo and A. Yasuda, "Performance evaluation of GPS augmentation using quasi-zenith satellite system," Aerospace and Electronic Systems, IEEE Transactions on, vol. 40, no. 4, pp. 1249--1260, 2004.
    [13] Y.-j. Tsai, Y.-c. Chao, T. Walter, C. Kee, P. Enge, B. Parkinson and D. Powell, "valuation of Orbit and Clock Models for Real-Time WAAS," in Institute of Navigation, National Technical Meeting, Anaheim, CA, 1995.
    [14] S. Kogure, M. Hosoi, N. Kubo and T. M. Sakai, "Assessment of the Benefit of Multiple GNSS Constellation use in Tokyo Downtown for Future Autonomous Driving and Advanced Driver Assistance System," in Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015), 2015.
    [15] G. Artaud, A. De Latour, J. Dantepal, L. Ries, E. Senant, N. Maury, J.-C. Denis and T. Bany, "A new GNSS multi constellation simulator: NAVYS," in Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 2010 5th ESA Workshop on, 2010.
    [16] D. A. Vdovin D, "Global geocentric coordinate system of the Russian Federation," available on line as http://www.oosa.unvienna.org/pdf/icg/2012/template/PZ90-02_v2.pdf, 2012.
    [17] P. Zhang, C. Xu, C. Hu, Y. Chen and J. Zhao, "Time scales and time transformations among satellite navigation systems," in China Satellite Navigation Conference (CSNC) 2012 Proceedings, 2012.
    [18] S. Riley, "An integrated multichannel GPS/GLONASS receiver," in Proceedings of the 5th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1992), 1992.
    [19] C. Rizos, M. Higgins and S. Hewitson, "New gnss developments and their impact on cors service providers," in 4th Int. Symp. & Exhibition on Geoinformation, CD-ROM Proceedings,(Penang, Malaysia), 2005.
    [20] J. Wang, N. L. Knight and X. Lu, "Impact of the GNSS time offsets on positioning reliability," Journal of Global Positioning Systems, vol. 10, no. 2, pp. 165--172, 2011.
    [21] D. Odijk and P. J. Teunissen, "Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolutionOdijk, Dennis and Teunissen, Peter JG," GPS solutions, vol. 17, no. 4, pp. 521--533, 2013.
    [22] D. Odijk and P. J. Teunissen, "Estimation of differential inter-system biases between the overlapping frequencies of GPS, Galileo, BeiDou and QZSS," in 4th International colloquium scientific and fundamental aspects of the Galileo programme, 2013.
    [23] N. Nadarajah, P. J. Teunissen and N. Raziq, "BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination," Sensors, vol. 13, no. 7, pp. 9435--9463, 2013.
    [24] D. Roongpiboonsopit and H. A Karimi, "A multi-constellations satellite selection algorithm for integrated global navigation satellite systems," Journal of Intelligent Transportation Systems, vol. 13, no. 3, pp. 127-141, 2009.
    [25] M. Kihara and T. Okada, "A satellite selection method and accuracy for the global positioning system," Navigation, vol. 31, no. 1, pp. 8-20, 1984.
    [26] J. Li, A. Ndili, L. Ward and S. Buchman, "GPS receiver satellite/antenna selection algorithm for the Stanford gravity probe B relativity mission," in National Technical Meeting’Vision 2010: Present and Future, 1999.
    [27] C.-W. Park, Precise relative navigation using augmented CDGPS, Thesis, Citeseer, 2001.
    [28] M. Zhang and J. Zhang, "A fast satellite selection algorithm: beyond four satellites," Selected Topics in Signal Processing, Journal of IEEE, vol. 3, no. 5, pp. 740-747, 2009.
    [29] N. Blanco-Delgado and F. D. Nunes, "Satellite selection method for multi-constellation GNSS using convex geometry," Vehicular Technology, Transactions on IEEE, vol. 59, no. 9, pp. 4289-4297, 2010.
    [30] T. W. G. R. U.S, "GPS-QZSS compatibility and interoperability," GPS-QZSS Technical Working Group, Japan, 2012.
    [31] M. Bahrami and M. Ziebart, "GNSS Geodetic Reference Frames: Consistency, Stability and the Related Transformation Parameters," in Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2001.
    [32] D. Zill, W. S. Wright and M. R. Cullen, Advanced engineering mathematics, Jones & Bartlett Learning, 2011.
    [33] B. W. Parkinson and J. J. Spilker, Progress In Astronautics and Aeronautics: Global Positioning System: Theory and Applications, Aiaa, 1996.
    [34] Y. Hafiz and K. Nor, "Analysis of GPS visibility and satellite-receiver geometry over different latitudinal regions," in Intemational Symposium on Geoinformation. Putra World Trade Centre, Kuala Lumpur, Malaysia, 2008.
    [35] A.-L. Tao and S.-S. Jan, "Wide-area ionospheric delay model for GNSS users in middle-and low-magnetic-latitude regions," GPS Solutions, pp. 1-13, 2015.
    [36] S.-S. Jan and A.-L. Tao, "The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System," Sensors, vol. 8, pp. 15182-15202, 2014.
    [37] S.-S. Jan and S.-C. Lu, "Implementation and Evaluation of the WADGPS system in the Taipei flight information region," Sensors, vol. 10, no. 4, pp. 2995--3022, 2010.
    [38] D. M. Akos, P.-L. Normark, J.-T. Lee, K. G. Gromov, J. B. Tsui and J. Schamus, "Low power global navigation satellite system (GNSS) signal detection and processing," in Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation, 2000.
    [39] A. Van Dierendonck, D. Akos, S. Pullen, R. E. Phelts and P. Enge, "Practical Implementation Considerations in the Detection of GPS Satellite Signal Failure," in Proceedings of the IAIN World Congress and the 56th Annual Meeting of The Institute of Navigation, 2000.
    [40] A. Mitelman, R. E. Phelts, D. Akos, S. Pullen and P. Enge, "A real-time signal quality monitor for GPS augmentation systems," in Proceedings of ION GPS 2000, 2000.
    [41] P. Enge, R. Phelts and A. Mitelman, "Detecting Anomalous Signals From GPS Satellites for the Local Area Augmentation System (LAAS)," in Presented as Working Paper 19 to GNSS Panel meeting, Oct. 1999.
    [42] S. Edwards, P. Cross, J. Barnes and D. Betaille, "A methodology for benchmarking real time kinematic GPS," Survey Review, vol. 35, no. 273, pp. 163-174, 1999.
    [43] A. Schmid and A. Neubauer, "Carrier to noise power estimation for enhanced sensitivity Galileo/GPS receivers," in Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, 2005.
    [44] C.-K. Feng, S.-S. Jan, T. Johnson and D. Akos, "Assessment of camera capture for GPS RFI monitor," in Position, Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION, 2014.
    [45] C. Tiberius, T. Pany, B. Eissfeller, K. De Jong, P. Joosten and S. Verhagen, "Integral GPS-Galileo ambiguity resolution," in Proc. GNSS 2002, 2002.
    [46] J. A. Klobuchar, "Design and characteristics of the GPS ionospheric time delay algorithm for single frequency users," in PLANS'86-Position Location and Navigation Symposium, 1986.
    [47] J. Saastamoinen, "Contributions to the theory of atmospheric refraction," Bulletin Geodesique, vol. 107, no. 1, pp. 13-34, 1973.
    [48] H. D. Black, "An easily implemented algorithm for the tropospheric range correction," Journal of Geophysical Research: Solid Earth, vol. 83, no. 84, pp. 1825-1828, 1978.
    [49] P. D’Angelo, A. Fernandez, J. Diez, D. Fossati, L. Maradi and V. Gabaglio, "Performance and visibility analysis for different Galileo/GPS receivers with the GRANADA Environment and Navigation Simulator," in Proceedings of ENCGNSS Conference, 2005.
    [50] X. Bo and B. Shao, "Satellite selection algorithm for combined GPS-Galileo navigation receiver," in Autonomous Robots and Agents, 2009. 4th International Conference on ICARA 2009., 2009.
    [51] L. Li, H. Yuan, C. Yuan, D. Wei and W. Liu, "GNSS Satellite Selection Algorithm Revisited: A Weighted Way with Integrity Consideration," in China Satellite 168 Navigation Conference (CSNC) 2013 Proceedings, 2013.
    [52] F. Meng, B. Zhu and S. Wang, "A new fast satellite selection algorithm for BDS-GPS receivers," in Signal Processing Systems (SiPS), Workshop on 2013 IEEE, 2013.
    [53] G. Xie, "Optimal on-airport monitoring of the integrity of GPS-based landing systems," Ph.D. dissertation, Stanford University, 2004.
    [54] T. Walter and P. Enge, "Weighted RAIM for precision approach," in PROCEEDINGS OF ION GPS 1995, 1995.
    [55] Y. Wu, J. Wang and Y. Jiang, "Advanced receiver autonomous integrity monitoring (ARAIM) schemes with GNSS time offsets," Advances in Space Research, vol. 52, no. 1, pp. 52--61, 2013.
    [56] C.-C. Sun, Developing of GNSS Software Defined Receiver TestBed: Single Frequency Approach, National Cheng Kung University Department of Aeronautics & Astronautics: Master thesis, 2007.
    [57] S.-S. Jan and A.-L. Tao, "The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System.," Sensors, vol. 14, no. 8, pp. 15182--15202, 2014.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE