簡易檢索 / 詳目顯示

研究生: 權玟翰
Chuan, Wem-Han
論文名稱: 台灣PM2.5與臭氧的共同管制
Comprehensive Control of PM2.5 and Ozone in Taiwan
指導教授: 吳義林
Wu, Yee-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 細懸浮微粒臭氧共同管制水溶性離子
外文關鍵詞: PM2.5, ozone, CMAQ, Comprehensive Control, Water-soluble ion
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從台灣於2012年訂定細懸浮微粒周界標準以來,台灣的細懸浮微粒濃度每年都持續下降,代表細懸浮微粒管制策略的成效;但是臭氧濃度卻幾乎保持不變,特別是每日最高8小時平均值經常超過標準值。細懸浮微粒和臭氧的形成過程非常複雜,涉及多項前驅物物種與化學機制;例如氣相SO2 、NO2與揮發性有機物被氧化而分別生成固相硫酸鹽、硝酸鹽與有機氣膠,這些化學反應需要大氣中的氧化劑來促進,其中包括臭氧、H2O2和羥基自由基等;根據Pitts (2000)及Seinfeld (1998)書中所述,其主要反應有兩個循環所導致,分別為臭氧-氮氧化物滴定循環和揮發性有機物化合物氧化循環,故臭氧的生成與NOx和VOCs有關。
    為了更好地了解PM2.5和O3之間的關係,本研究對2016、2019年台灣的測量數據和CMAQ模型的模擬數據進行了分析。本研究中針對主要的PM2.5水溶性組成成分硝酸根與硫酸根搭配模擬值的逐時濃度圖探討其形成機制,硝酸根形成主要由境內所產生,透過早上的NO2與O3反應形成的NO3 radical,在夜晚累積後與NO2反應形成N2O5,N2O5再與H2O形成HNO3,最後再與NH3形成NH4NO3,台灣硝酸根有南北差異主要為NH3的濃度所導致,南部地區NH3濃度高,因此在相同NO2下所形成的硝酸根較多;硫酸根的形成有2/3來源於境外的傳入,在境內部分主要透過SO2與H2O2在液相的反應形成,在上午5~8點間有峰值產生,其形成原因為溫度所導致,溫度越低H2O2的亨利常數越大,在液相中的H2O2的濃度上升形成更多硫酸根,導致峰值產生。了解硝酸根、硫酸根形成機制和臭氧形成機制後,參考Sillman (1995)臭氧敏感性H2O2/HNO3指標範圍0.35~0.6,了解台灣各地的臭氧敏感性,但在後續的模擬中發現其指標範圍可能不適用於台灣,本研究透過模擬分別只減量NOx或VOCs來觀察PM2.5和臭氧的濃度變化,得出NOx和VOCs的減量對於PM2.5的減量有正向影響,VOCs的減量對於臭氧的減量也是正向影響,但NOx的減量則需要謹慎管理有稍有不慎可能導致臭氧濃度上升,若想對NOx進行管制則應該搭配臭氧的濃度去做評估,並且至少要使OT下降20%以上才可以使O3_8hr的濃度會下降。

    This study employs measurement data from Taiwan in 2016 and 2019, as well as simulated values from the CMAQ model, to dissect the formation mechanisms of nitrate and sulfate and gain insights into the influence of changes in NOx and VOCs on both PM2.5 and ozone via CMAQ simulations. Nitrate formation predominantly occurs within Taiwan, with the north-south variation attributed to NH3 concentration discrepancies. The southern region experiences higher NH3 levels, leading to heightened nitrate ion formation under equivalent NO2 conditions. External sources account for around two-thirds of sulfate ion generation, while domestic production is primarily driven by the liquid-phase reaction between SO2 and H2O2. Reducing NOx and VOCs exhibits a favorable impact on PM2.5 reduction, and curbing VOCs also demonstrates a positive effect on ozone reduction. However, the reduction of NOx necessitates cautious management, given the potential for elevated ozone concentrations. Should NOx control be pursued, a comprehensive evaluation in conjunction with ozone concentrations is imperative. Furthermore, achieving a substantial reduction of at least 20% OT (NO2 + O3) is essential to effect meaningful decreases in O3_8-hour concentrations.

    摘要 I 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 XI 第1 章、前言 1 1.1研究動機 1 1.2研究目的 2 第2章、文獻回顧 3 2.1 懸浮微粒特性相關研究 3 2.1.1粒徑分布 3 2.1.2組成成分及來源 4 2.2臭氧特性相關研究 9 2.2.1對流層中臭氧的形成 9 第3章、研究方法 11 3.1研究架構 11 3.2 PM2.5手動測站數據 12 3.3 PM2.5水溶性數據 14 3.3.1分析方法 14 3.3.2品保品管 14 3.4 CMAQ模擬數據 17 3.4.1 模式模擬性能評估 17 3.4.2 模擬情境 20 第4章、結果與討論 21 4.1歷年數據統計分析 21 4.1.1全台長期數據 21 4.1.2各空品區數據 24 4.2 CMAQ模擬數據分析 26 4.2.1模擬數據處理 26 4.2.2境內外模擬數據統計 32 4.2.3總硫、總氮 43 4.3 硝酸根形成機制 50 4.3.1 硝酸根與前驅物 50 4.3.2 五價氮的固氣變化 51 4.3.3 逐時硝酸根濃度 53 4.4 硫酸根形成機制 56 4.4.1 硫酸根與前驅物 56 4.4.2 逐時硫酸根濃度 57 4.5臭氧敏感性 60 4.6共同管制 62 4.6.1 依臭氧敏感性進行共同管制 62 4.6.2 NOx和VOCs的減量對PM2.5和O3的影響 67 4.6.3 OT與O3濃度變化 68 第5章結論與建議 73 5.1結論 73 5.2建議 74 第6章、參考資料 75 附錄一、各測站硝酸根逐時濃度圖 78 附錄二、各測站硫酸根逐時濃度圖 86 附錄三、手動測站事件日分析 94

    1. Appel, B. R., Kothny, E. L., Hoffer, E. M., Hidy, G. M., & Wesolowski, J. J. (1978). Sulfate and nitrate data from the California Aerosol Characterization Experiment (ACHEX). Environmental Science & Technology, 12(4), 418-425.
    2. Bardouki, H., Berresheim, H., Vrekoussis, M., Sciare, J., Kouvarakis, G., Oikonomou, K. & Mihalopoulos, N. (2003). Gaseous (DMS, MSA, SO2, H2SO4, and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete. Atmospheric Chemistry and Physics, 3(5), 1871-1886.
    3. Fan, M. Y., Zhang, Y. L., Lin, Y. C., Cao, F., Zhao, Z. Y., Sun, Y., ... & Wang, Y. (2020). Changes of emission sources to nitrate aerosols in Beijing after the clean air actions: Evidence from dual isotope compositions. Journal of Geophysical Research: Atmospheres, 125(12), e2019JD031998.
    4. Jones, C. L., & Seinfeld, J. H. (1983). The oxidation of NO2 to nitrate day and night. Atmospheric Environment Part A-General Topics, 17(11), 2370-2373.
    5. Jin, X., & Holloway, T. (2015). Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres, 120(14), 7229-7246.
    6. Kadowaki, S. (1986). On the nature of atmospheric oxidation processes of sulfur dioxide to sulfate and of nitrogen dioxide to nitrate on the basis of diurnal variations of sulfate, nitrate, and other pollutants in an urban area. Environmental Science & Technology, 20(12), 1249-1253.
    7. Kim, Y. J., Spak, S. N., Carmichael, G. R., Riemer, N., & Stanier, C. O. (2014). Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America. Journal of Geophysical Research: Atmospheres, 119(21), 12-420.
    8. Kwok, R. H. F., Baker, K. R., Napelenok, S. L., & Tonnesen, G. S. (2015). Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment. Geoscientific Model Development, 8(1), 99-114.
    9. Lu, C. H., & Chang, J. S. (1998). On the indicator‐based approach to assess ozone sensitivities and emissions features. Journal of Geophysical Research: Atmospheres, 103(D3), 3453-3462.
    10. Lei, H., & Wang, J. X. L. (2014). Sensitivities of NOx transformation and the effects on surface ozone and nitrate. Atmospheric Chemistry and Physics, 14(3), 1385-1396.
    11. Liu, T., Chan, A. W., & Abbatt, J. P. (2021). Multiphase oxidation of sulfur dioxide in aerosol particles: implications for sulfate formation in polluted environments. Environmental Science & Technology, 55(8), 4227-4242.
    12. Middleton, P., Kiang, C. S., & Mohnen, V. A. (1980). Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment (1967), 14(4), 463-472.
    13. Pilinis, C., & Seinfeld, J. H. (1988). Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmospheric Environment (1967), 22(9), 1985-2001.
    14. Richards, L. W. (1983). Comments on the oxidation of NO2 to nitrate—day and night. Atmospheric Environment (1967), 17(2), 397-402.
    15. Romer Present, P. S., Zare, A., & Cohen, R. C. (2020). The changing role of organic nitrates in the removal and transport of NOx. Atmospheric Chemistry and Physics, 20(1), 267-279.
    16. Seinfeld, J. H. (1986). ES&T books: Atmospheric Chemistry and physics of air pollution. Environmental science & technology, 20(9), 863-863.
    17. Sillman, S. (1995). The use of NOy, H2O2, and HNO3 as indicators for ozone‐NO x‐hydrocarbon sensitivity in urban locations. Journal of Geophysical Research: Atmospheres, 100(D7), 14175-14188.
    18. Sillman, S., & He, D. (2002). Some theoretical results concerning O3‐NOx‐VOC chemistry and NOx‐VOC indicators. Journal of Geophysical Research: Atmospheres, 107(D22), ACH-26.
    19. Wagman, J., Lee Jr, R. E., & Axt, C. J. (1967). Influence of some atmospheric variables on the concentration and particle size distribution of sulfate in urban air. Atmospheric Environment (1967), 1(4), 479-489.
    20. Wolff, G. T., Monson, P. R., & Ferman, M. A. (1979). On the nature of the diurnal variation of sulfates at rural sites in the eastern United States. Environmental Science & Technology, 13(10), 1271-1276.
    21. Weber, R. (2003). Short-term temporal variation in PM2.5 mass and chemical composition during the Atlanta Supersite Experiment, 1999. Journal of the Air & Waste Management Association, 53(1), 84-91.
    22. Zhang, S., Li, D., Ge, S., Liu, S., Wu, C., Wang, Y., ... & Wang, G. (2021). Rapid sulfate formation from synergetic oxidation of SO2 by O3 and NO2 under ammonia-rich conditions: Implications for the explosive growth of atmospheric PM2.5 during haze events in China. Science of The Total Environment, 772, 144897.
    23. 林帥和(2020),” 2013-2019年台灣細懸浮微粒之水溶性離子時空變化與高污染事件日形成機制解析”,國立成功大學環境工程研究所碩士論文
    24. 行政院環保署,環境資源資料庫,https://data.epa.gov.tw/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE