| 研究生: |
盧俊廷 Lu, Chun-Ting |
|---|---|
| 論文名稱: |
鋁鈧合金在極高速剪切荷載下之絕熱剪切變形行為研究 Adiabatic Shearing Behaviour of Al-Sc Alloys under Extreme High Shear Loading |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 高速荷載 、帽型試件 、鋁鈧合金 |
| 外文關鍵詞: | Al-Sc Alloy, Adiabatic Shear, Hat-Shaped, shear band |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究主要是利用霍普金森撞擊試驗機,利用帽型試件(Hat Shaped)來探討三種不同鋁鈧合金在極高速動態剪切荷載下之絕熱剪切變形行為。實驗於室溫25℃,應變速率分別為3.0x105s-1~6.3x105s-1下進行,藉由實驗所得之巨觀機械性質與和微觀破壞機制,來探討以瞭解鋁鈧合金件在極高應變速率下的動態剪切特性及剪切帶微觀組織之變化。
實驗結果顯示,應變速率及應變量對鋁鈧合金的巨觀機械性質影響甚鉅,其塑流應力值隨著應變速率的增加而上升;在達到最大值後,因為熱軟化之影響,塑流應力隨著應變量的增加而下降。鋁鈧合金的應變速率敏感性係數隨應變速率上升而增加;隨應變量增加而減少。熱活化體積則隨著應變速率之增加而下降,隨應變量增加而增加。隨著應變量的增加,加工硬化率及應變速率敏感性皆呈現下降的趨勢,而熱活化體積則會上升。
微觀組織經由金相觀察後,發現三種鋁鈧合金的絕熱剪切帶均為變形剪切帶,且剪切帶寬度隨應變速率增加而減小。剪切帶中心的局部應變量最大,隨著離開剪切帶的距離增加局部應變量迅速減小。SEM破斷面分析發現三種鋁鈧合金破壞特徵為韌窩組織形貌,隨著應變速率增加,韌窩深度亦隨之增加。在三種鋁鈧合金的破斷面上並沒有觀察到任何的脆性劈裂形貌,顯示出這三種鋁鈧合金在極高速剪切荷載下仍然保持良好的塑變能力。
This study uses a compressive split-Hopkinson pressure bar with hat-shaped specimens to investigate adiabatic shear banding in three Al-Sc alloys tested at room temperature under extremely high strain rates ranging from 3.0×105s-1 to 6.5×105s-1. Optical microscopy (OM) and scanning electronic microscopy (SEM) techniques are used to analyze the shear band formation and the microstructural characteristics of the deformed specimens in order to establish the correlation between the adiabatic shear behaviour of the three Al-Sc alloys and their respective mechanical properties.
The experimental results indicate that the shear properties of the three alloys are significantly dependent upon the applied strain rate and strain. The shear flow stress, shear strain, strain rate sensitivity and temperature rise are all found to increase with increasing strain rate. Thermal softening takes place during the current adiabatic shear processes and has a significant effect on the dynamic shear mechanical properties of the Al-Sc alloys. Thermal softening results in strain instability and strain localization, and eventually leads to fracturing of the adiabatic shear band. The OM observations reveal that adiabatic shear bands are formed in all the impacted specimens. The local shear strain decreases with increasing distance from the center of the shear band, while the width of the shear band decreases with increasing strain rate. The SEM results reveal that the fracture surfaces of the three Al-Sc alloys are characterized by a dimple-like structure, which indicates that the specimens fail in a ductile manner. Furthermore, it is observed that the characteristic size of the dimples increases with increasing strain rate.
The results presented in this paper provide a useful reference for the application of the three Al-Sc alloys in high-speed plastic forming processes.
1.Gabriel M. Novotny, Alan J. Ardell, “Precipitation of Al3Sc in binary Al-Sc alloys.” Materials Science and Engineering A, Vol. 318, pp. 144-154, 2001.
2.V. V. Zakharvo, “Effect of Scandium on the Structure and Properties of Aluminum Alloys,” Matal Science and Heat Treatment, Vol. 45, pp. 7-15, 2003.
3.E. A. Marquis, D. N. Seidman, “Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys,” Acta Materialia, Vol. 49, pp. 1909-1919, 2001.
4.Zhimin Yin, Qinglin Pan, Yonghong Zhang, Feng Jiang, “Effect of Minor Sc anf Zr on the Microstructure and Mechanical Properties of Al-Mg Base Alloy.” Materials Science and Engineering A, A280 , (2000), pp. 151-155, 2000.
5.Vladivoj Ocenasek, Margarita Slamova, “Resistance of Recrystallization Due to Sc ad Zr Addition to Al-Mg Alloys,” Materials Characterization, Vol. 47, pp157-162, 2001.
6.Borge Forbord, Hakon Hallem, Nils Ryum, Knut Marthinsen, “Precipitation of Recrystallisation in Al-Mn-Zr with an without Sc,” Materials Science and Engineering A, Vol.
387-89, pp. 936-939, 2004.
7.M. J. Jones and F. J. Humphreys, “Interaction of Recrystallization and Precipitation: The Effect of Al3Sc on the Recrystallization Behaviour of Deformed Aluminum,” Acta Materialia, Vol. 51, pp. 2149-2159, 2003.
8.Y. W. Riddle and T. H. Sanders, Jr., “Contribution to Al3Sc to Recrystallization Resistance in Wrought Al-Sc Alloys,” Materials Science Forum, Vol. 331, pp. 939-944,
2000.
9.T. D. Rostova, V. G. Davydov, V. I. Yelagin and V. V. Zakharov, “Effect of Scandium on Recrystallization of Aluminum and Its Alloys,” Materials Science Forum, Vol. 331, pp. 793-798, 2000.
10.Y. Miura, T. Shioyama and D. Hara, “Recrystallization of Al-3Mg and Al-3Mg-0.2Sc Alloys,” Materials Science Forum, Vol. 217-222, pp. 505-510, 1996.
11.Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 80-91, 1992.
12.V. V. Zakharvo, T. D. Rostova, “Shear Bands in Aluminum Alloys Containing Scandium and Lithium,” Matal Science and Heat Treatment, Vol. 38, pp. 18-21, 1996.
13.M. N. Desmukh, R. K. Pandey and A. K. Mukhopadhyay, “Fatigue Behavior of 7010 Aluminum Alloy Containing Scandium,” Scripta Materialia, Vol. 52, pp. 645-650, 2005.
14.C. Watanabe, C. Y. Jin, R. Monzen and K. Kitagawa, “Low-cycle Fatigue Behavior and Dislocation Structure of an Al-Mg-Sc Alloy,” Materials Science and Engineering A,
Vol. 387-389, pp. 552-555, 2004.
15.T. Wirtz, G. Lutjerung, A. Gysler, B. Lenczowski and R. Rauh, “Fatigue Properties of the Aluminum Alloys 6013 and Al-Mg-Sc,” Materials Science Forum, Vol. 331, pp. 1489-1494, 2000.
16.O. Roder, T. Wirtz, A. Gysler and G. Lutjerung, “Fatigue Properties of Al-Mg Alloys with and without Scandium,” Materials Science and Engineering A, Vol. 234-236, pp. 181-184, 1997.
17.M. Ferry, N. E. Hamilton and F. J. Humphreys, “Continuous and Discontinuous Grain Coarsening in a Fine-Grained Particle-Containing Al-Sc Alloy,” Acta Materialia, Vol. 53, pp. 1097-1109, 2005.
18.S. Iwamura and Y. Miura, “Loss in Coherency and Coarsening Behavior of Al3Sc Precipitates,” Acta Materialia, Vol. 52, pp. 591-600, 2004.
19.F. Musin, R. Kaibyshev, Y. Motohashi and G. Itoh, “High Strain Rate Superplasticity in a commercial Al-Mg-Sc Alloy,” Scripta Materialia, Vol. 50, pp. 511-516, 2004.
20.K. T. Park, D. Y. Hwang, Y. K. Lee, Y. K. Kim and D. H. Shin, “High Strain Rate Superplasticity of Submicrometer Grained 5083 Al Alloy Containing Scandium Fabricated by
Severe Plastic Deformation,” Materials Science and Engineering A, Vol. 341, pp. 273-281, 2003.
21.S. Lee, A Utsunomiya, H. Akamastu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, “Influence of Scandium and Zirconium on Grain stability and Superplastic Ductilites in Ultrafine-Grained Al-Mg Alloys,”Acta Materialia, Vol. 50, (2002), pp. 553-564, 2001.
22.黃振賢,機械材料,文京圖書股份有限公司,頁,311-317,民國85年。
23.John E. Hatch, Aluminum Properties and Physical Metallurgy, American Society for Metals, pp. 224-241, 1984.
24.James A. Jacobs, Thomas F. Kilduff, “Engineering Materials Technology 5th , pp. 361, 2005.
25.James A. Jacobs, Thomas F. Kilduff, “Engineering Materials Technology 5th , pp. 358-363, 2005.
26.Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principle 3rd, PWS Publishing Company, pp. 515-537. 1992.
27.P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, “Precipitation Hardening of an Al-4.2 wt% Mg-0.6 wt% Cu alloy,” Acta Metallurgical, Vol. 46, No. 10, pp. 3523-
3533. 1998.
28.S.M. Hirth, G.J. Marshall, S.A. Court, D.J, “Effect of Si on the Aging Behaviour and Formability of Aluminum Alloys Base on AA6061,” Materials Science and Engineering
A, A319-321, (2001), pp. 452-356, 2001.
29.R. Clark Jr, B. Coughran, I. Traina, A. Hernandez, T. Scheck, C. Etuk, J. Peters, E.W. Lee, J. Ogren, O.S. Es-Said, “On the Correlation of Mechanical and Physical Properties of 7075-T6 Al Alloy,” Engineering Failure Analysis, Vol. 12, Issue 4, pp. 520-526. 2005.
30.Zhiguo Chen, Ziqiao Zheng, “Microstructural Evolution and Ageing Behaviour of the Low Cu:Mg ratio Al-Cu-Mg Alloys Cotaining Scandium and Lithium,” Scripta Materialia, Vol. 50, (2004), pp. 1067-1071, 2003.
31.Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles 3rd , International Thomson Publishing, pp. 18-19, 1992.
32.Emmanuelle A. Marquis, David N. Seidman, David C. Dunand, “Effect of Mg Addition on the Creep and Yield Behavior of an Al-Sc Alloy,” Acta Materialia, Vol. 51, (2003), pp. 4751-4760, 2003.
33.Vijaya Singh, K. Satya Prasad, Amol A. Gokhal, “Effect of Minor Sc Addition on Structure, Age Hardening and Tensile Properties of Aluminum Alloy AA8090 Plate,” Scripta Materialia, Vol. 50, pp. 903-908, 2003.
34.N. I. Kolobnev, “Aluminum-Lithium Alloys with Scandium,” Matal Science and Heat Treatment, Vol. 44 pp. 30-32, 2002.
35.Christian B. Fuller, Albert R. Krause, David C. Dunand, David N. Seidman, “Microstructure and Mechanical Properties of a 5754 Aluminum Alloy Modified by Sc and Zr
Additions” Materials Science and Engineering A, A338, (2002), pp. 8-16, 2001.
36.V. V. Zakharvo, “Industrial Aluminum with Scandium Additive.” Matal Science and Heat Treatment, Vol. 37, pp. 21-23, 1995.
37.V. V. Zakharvo, T. D. Rostova, “High-Resource High-Strength Aluminum Alloys.” Matal Science and Heat Treatment, Vol. 37, pp. 27-31, 1995.
38.Yu. A. Filatov, V. I. Yelagin and V. V. Zakharov, “New Al-Mg-Sc Alloys,” Materials Science and Engineering A, Vol. 280, pp. 97-101, 2000.
39.Zaki Ahmad, “The Properties and Application of Scandium-Reinforced Aluminum,” JOM Aluminum Composite Overview, pp. 35, 2003 Feb.
40.V. V. Zakharvo, V. G. Davydov, V. I.Elagin, T. D. Rostova, “Alloying Aluminum Alloys with Scandium and Zirconium Additives.” Matal Science and Heat Treatment, Vol. 38, pp. 25-30, 1996.
41.Kun Yu, Wenxian Li, Songrui Li, Jun Zhao, “Mechanical properties and Microstructure of Aluminum Alloy 2618 with Al3(Sc, Zr) Phases,” Materials Science and Engineering A, Vol. 368, pp. 88-93, 2004.
42.A. Tolley, V. Radmilovic, U. Dahmen, “Segregation in Al3(Sc,Zr) Precipitates Al-Sc-Zr Alloys,” Scripta Materialia, Vol. 52, pp. 621-625, 2005.
43.Y. Harada, D.C. Dunand, “Thermal Expansion Al3Sc and Al3(Sc0.75,X0.25),” Scripta Materialia, Vol. 48, pp. 219-222, 2003.
44.K. L. Kendig, D. B. Miracle, “Strengthening Mechanisms of an Al-Mg-Sc-Zr Alloy,” Acta Materialia, Vol. 50, pp. 4165-4175, 2002.
45.Y.W., Riddle, T.H.Sanders, Jr, “A Study of Coarsening, Recrystallization, and Morphology of Microstructure in Al-Sc-Zr-Mg Alloys.” Metallurgical and Materials ransactions A, Vol. 35A, pp. 341-350, January 2004.
46.V.G. Davydov, T.D. Rostov, V.V. Zakharov, Yu.A. Filatov, V.I. Yelagin, “Scientific Principle of an Alloying Addition of Scandium to aluminum Alloys,” Materials Science and Engineering A, Vol. 280, pp. 30-36, 2000.
47.V.Singh, K. S. Prasad, A. A. Gokhale, “Microstructure and Age Hardening Response of Cast Al-Sc-Zr-Mg Alloys.” Journal of Materials Science, Vol.39, pp. 2861-2864, 2004.
48.M. Furukawa, A Utsunomiya, K. Matsubara, Z. Horita, T.G. Langdon, “Influence of Magnesium on Grain Refinement and Ductility in a Dilute Al-Sc Alloy,” Acta Materialia, Vol. 49, pp. 3829-3838, 2001.
49.V. V. Zakharvo, T. D. Rostova “On the Possibility of Scandium Alloying of Copper-Containing Aluminum Alloys.” Matal Science and Heat Treatment, Vol. 37, pp. 23-27, 1995.
50.Xu Guo-Fu, Nie Zuo-Ren, Jin Tou-nan, Rong Li, Yin Zhi-min, “Microstructure and Properties of Al-4Cu Alloy Containing,” Trans. Nonferrous Met. Soc. China, Vol. 14, pp. 63-66, Feb. 2004.
51.Røyset, N. Ryum,” Scandium in aluminium alloys”, International Materials Reviews, Vol. 50, No.1, pp. 19-44, 2005.
52.U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
53.M. A. Meyers, Elastic Waves in Dynamics Behavior of Materials, John Wiley & Sons, pp. 23-65, 1994.
54.J. D. Campbell, “Dynamic Plasticity-Macrosopic and Microscopic Aspects,” Materials Science and Engineering A, Vol. 12, pp. 3-21, 1973.
55.Y. L. Bai and B. Dodd: Adiabatic Shear Localization Occurrence, Theories and Applications, Pergamon Press, N. Y., 1992.
56.M. A. Meyers and L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, pp. 129-167, 1981.
57.U. Andrade, M. A. Meyers, K. S. Vecchio and A. H. Chokshi, “Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper,” Acta Metall.
Mater, 42, pp. 3183-3195, 1994.
58.S. Nemat-Nasser, J. B. Isaacs and M. Liu, “Microstructure of High-Strain,High-Strain-Rate Deformed Tantalum,” Acta Mater., 46, pp. 1307-1325, 1998.
59.M. A. Meyers, V. F. Nesterenko, J. C. LaSalvia and Q. Xue, “Shear Localization in Dynamic Deformation of Materials: Microstructural evolution and self-organization,”Mater. Sci. Eng. A, 317, pp. 204-225, 2001.
60.ASM Handbook Committee, Metals Handbook, American Society for Metals, pp. 215-230, 1978.
61.J. D. Campbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects,” Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
62.D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys,” Vol. III, ASM, pp. 951, 1970.
63.J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
64.A. M. Eleiche and J. D. Campbell, “Strain-Rate Effects During Reverse Torsional Shear,” Experimental Mechanics, Vol. 16, pp. 281-290, 1976.
65.A. Seeger, “The Generation of Lattice Defects by Moving Dislocations, and its Application to the Temperature Dependence of the Flow-Stress of FCC Crystals,” The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
66.U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
67.W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
68.J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp.43-63, 1970.
69.Dong-Kuk Kim, Sunhak Lee, Woon Hyung Baek, “Microstructure Study of Adiabatic Shear Bands Formed by High-Speed Impact in a Tungsten Heavy Alloy Penetrator,” Materials Science and Engineering A, Vol. 249, pp. 197-205, 1998.
70.D.S. Kim, S. Nemat-Nasser, J.B. Isaacs, D. Lischer,” Adiabatic Shear Bands in WHA in High-Strain-Rate Compression,” Mechanics of Materials, Vol. 28, pp. 227-236, 1998.
71.D. A. Shockey, “Materials aspects of the adiabatic shear Phenomenon”, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (ed. By L. E. Murr, K.
P. Staudhammer and M. A. Meyers), pp. 633-656, 1986.
72.C. Zener and J. H. Hollomon, “Effect of Strain Rate upon Plastic Flow of Steel”, J. Appl. Phys., 15, pp. 22-32, 1944.
73.Y. B. Xu, Y. L. Bai, Q. Xue and L. T. Shen “Formation Microstructure and Development of the Localized Shear Deformation in Low Carbon Steels,” Acta Materialia, Vol.
44, pp.1917-1926, 1996.
74.B. Dodd and Y. Bai, “Width of Adiabatic Shear Bands,” Materials Science Technology, Vol. 1, pp. 38-40, 1985.
75.C. Mason, M. J. Worswick, “Adiabatic Shear in Annealed and Shock-Hardened Iron and in Quenched and Tempered 4340 Steel,” International Journal of Fracture, Vol. 111,
pp. 29-51, 2001.
76.Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Liu, Y. L. Bai and M. A. Meyers, “Shear Localization and Recrystallization in Dynamic Deformation of 8090Al-Li Alloy,"Materials Science and Engineering A, Vol. 299, pp. 287-295, 2001.