簡易檢索 / 詳目顯示

研究生: 張家婷
Chang, Chia-Ting
論文名稱: 具奈米結構之氧化鐵修飾電極應用在電化學式過氧化氫感測器的開發
Fabrication of Nanostructured Iron Oxide Based Modified Electrode in Electrochemical Sensing of H2O2
指導教授: 林家裕
Lin, Chia-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 130
中文關鍵詞: 電化學感測器過氧化氫磷酸鐵氧化鐵奈米顆粒奈米柱奈米片
外文關鍵詞: Electrochemical sensor, Hydrogen peroxide, Iron phosphate, Iron oxides, Nanoparticles, Nanorods, Nanosheets
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究氧化鐵修飾之電極表面的化學組成、結晶相態和奈米結構,探討其對過氧化氫還原的電催化活性。首先,我們利用化學沉積法來製備氧化鐵修飾電極,藉由調控前驅液的組成和反應時間,控制氧化鐵表面的成份、結晶相,以及形成不同奈米結構的氧化鐵。隨後,利用X 光繞射、掃描式電子顯微鏡、能量色散光譜、X 射線光電子能譜、傅立葉轉換紅外線光譜、拉曼光譜等儀器來檢測修飾電極的結晶相、表面形貌及化學組成。最後,使用線性掃描法、循環伏安法和計時安培法等電化學方法分析並探討其電催化性質。
    本研究主要分成兩個部分,一部分是氧化鐵結晶相的效應,另外一部分是氧化鐵奈米結構的效應。在第一部分研究中,我們製備奈米柱狀的四方纖鐵礦(Akaganeite, β-FeOOH)、磁赤鐵礦(Maghemite, γ-Fe2O3) 和赤鐵礦(Hematite, α-Fe2O3)修飾電極,並對這三種氧化鐵修飾電極進行研究,其結果顯示:氧化鐵會因為結晶相的不同而導致其在電催化過氧化氫的不同表現。第二部分,我們合成出奈米柱狀、奈米片狀和奈米顆粒狀等三種不同奈米結構的赤鐵礦修飾電極,並探討奈米結構對於電催化過氧化氫還原活性的影響。除了上述兩個因素會影響過氧化氫的電催化活性之外,在磷酸鹽電解質的電化學前處理過程中,我們觀察到磷酸鐵電化學物質會同時沉積在電極表面,而沉積的磷酸鐵物質與製備的氧化鐵電極之間,無論是相互作用,或是相容性上都扮演相當重要的角色,其決定了整體電極的電催化活性。
    根據第三章的結果指出,比起另兩種結晶相的氧化鐵,磷酸鐵物質較容易在赤鐵礦修飾電極上進行氧化還原,並且,相較於未修飾的赤鐵礦電極,經由磷酸鐵修飾的赤鐵礦對過氧化氫還原具有較高的電催化活性。此外,對於具有磷酸鐵修飾的柱狀赤鐵礦電極,我們發現:若是在含有低濃度過氧化氫(1.66 mM)的磷酸鐵電解質中觀察其催化過氧化氫的電化學行為,會發現有兩個還原鋒存在,其中一個來自於磷酸鐵的電催化性質,其溶液中的酸鹼值影響;另外一個則是氧化鐵本質的電催化活性,不受環境的酸鹼值影響。另外我們亦發現:當在不含磷酸成分的電解質中添加過氧化氫時,所有的氧化鐵電極只會出現一個與酸鹼值無關的還原鋒。因此,針對兩種電解質環境下的電化學行為,我們推導出不同的過氧化氫感測機制。
    由第四章的結果顯示,影響整體電極之電催化活性的主要因素,來自於不同奈米結構的赤鐵礦和前處理過程中沉積的磷酸鐵之間的相容性。然而,我們也發現磷酸鐵對電催化活性的協同作用僅存在於奈米柱狀和片狀的赤鐵礦。最後,經由一系列電化學分析和最佳化過程後,得知經由磷酸鐵修飾的奈米片狀赤鐵礦電極,因為具有較高表面積以及較大的電催化過氧化氫還原速率常數,造成整體電催化還原活性最高;另一方面,經由磷酸鐵修飾的片狀氧化鐵修飾電極對過氧化氫同時也具有優異的感測性能,包括快速響應時間(~10 秒)、靈敏度高(225.0 ± 19.9 μA mM-1 cm-2)、線性範圍寬(0.66 μM~2.5 mM)、偵測極限低(3.4 ± 0.5 μM) 、甚至不受其他常見的生物分子干擾,具有高度選擇性。整體而,磷酸鐵修飾的奈米片狀赤鐵礦相當適合作為可靠的電化學過氧化氫感測器。
    除此之外,在以往的研究中,氧氣為還原式感測過氧化氫的潛在干擾,然而在本研究發現:磷酸鐵修飾的柱狀和片狀兩種結構的氧化鐵,在含有氧氣的溶液中對過氧化氫催化的活性不受影響。因此,不受氧氣干擾物影響的磷酸鐵修飾之氧化鐵電極,將使得它們有望應用在以氧化酶基底的電化學感測器中。

    In this study, the effects of chemical composition/crystal phase and nanostructure of iron oxides on their electrocatalytic activity of iron oxides towards the reduction of H2O2 were investigated. All the iron oxides were synthesized using a simple and scalable chemical bath deposition (CBD) method, and their chemical composition/crystal phse and nanostructure were controlled by adjusting the composition of precursor solution, reaction duration for CBD process, and annealing conditions. The crystal phase, chemical composition, surface morphology, and electrocatalytic properties of the synthesized irons were examined using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry, respectively. The electrocatalytic properties of β-FeOOH, γ-Fe2O3, and α-Fe2O3 nanorods arrays (NRs) were firstly investigated in Chapter 3, whereas those of α-Fe2O3 nanorods, α-Fe2O3 nanosheets, and α-Fe2O3 nanoparticles were examined in Chapter 4. It was found that iron phosphate (FePO4) was in-situ deposited onto these iron oxides during pretreatment in phosphate electrolyte, and the interaction between iron oxides and the deposited FePO4 played an important role in determining the electrocatalytic activity of the resultant electrodes.
    In Chapter 3, it was found that the redox reaction of FePO4 is more facile on α-Fe2O3NR, and the resultant FePO4 modified α-Fe2O3NR showed best electrocatalytic activity toward the reduction of H2O2. In addition, α-Fe2O3NR showed two reduction peaks in phosphate electrolyte containing 1.66 mM H2O2, one being pH-dependent and related to the electrocatalytic properties of FePO4, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe2O3NR. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H2O2. The sensing mechanisms in both conditions are proposed.
    In Chapter 4, it was found that the interaction/compatibility between deposited FePO4 and nanostructured α-Fe2O3 has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO4 only showed synergetic effect on the overall electrocatalytic activity of α-Fe2O3NR and α-Fe2O3NS. The surface area and rate constant for the electro-reduction of H2O2 on FePO4 modified α-Fe2O3NS (α-Fe2O3NS|FePO4) are highest, resulting in the best overall electrocatalytic activity. Finally, dissolved oxygen in solution showed negligible interference on the activity of FePO4 modified α-Fe2O3NR (α-Fe2O3NR|FePO4) and α-Fe2O3NS|FePO4, which makes them as promising sensing materials in oxidase-based electrochemical sensors. Under optimal conditions, α-Fe2O3NS|FePO4 exhibited excellent sensing characteristics, including fast response time about 10 seconds, a high sensitivity of 225.0 ± 19.9 μA mM-1cm-2, a wide linear range from 0.66 μM up to 2.5 mM, a low detection limit of 3.4 ± 0.5 μM, and high selectivity against some common biomolecules, suggesting its applicability as a reliable electrochemical H2O2 sensor.

    中文摘要 I Abstract III Acknowledgement V Table of contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Background Information 1 1.2 Introduction of Chemical Sensors 2 1.3 Hydrogen Peroxide Sensors 6 1.3.1 Electrochemical Sensors 8 1.4 Nanomaterials of Iron Oxide 12 1.5 Motivation 15 Chapter 2 Experimental Section 17 2.1 Materials and Reagents 17 2.2 Instrumentation 19 2.3 General Procedure 20 2.3.1 Cleaning Procedure of Conductive Glass (FTO) 20 2.3.2 Preparation of Electrolyte and Stock Solution of Analysis 21 2.4 Material Synthesis 22 2.4.1 Preparation of Akaganeite, Maghemite and Hematite Nanorods array 22 2.4.2 Preparation of Nanorods, Nanosheets, and Nanoparticles electrodes 24 2.4.3 Electrode preparation 24 2.5 Physical Characterization 25 2.5.1 Scanning electron microscopy (SEM) 25 2.5.2 Energy dispersive spectroscopy (EDS) 25 2.5.3 X-ray diffraction (XRD) 26 2.5.4 X-ray photoelectron spectroscopy (XPS) 26 2.5.5 Fourier transform infrared spectroscopy (FT-IR) 27 2.6 Electrochemical Characterization 28 Chapter 3 Iron Oxide Nanorods Array in Electrochemical Detection of H2O2 30 3.1 Overview of Chapter 3 30 3.2 Results and Discussion 31 3.2.1 Physical characterization 31 3.2.2 The discovery of iron phosphate on iron oxides with different crystal phase 34 3.2.3 Effects of phosphate ions on electrochemical behaviors during pretreatment 37 3.2.4 Electrocatalytic activities of pretreated nanorods electrodes to the reduction of H2O2 48 3.2.5 Mechanistic interpretation toward H2O2 reduction on iron oxide modified electrodes 55 3.2.6 Sensing characteristics of iron oxide nanorods 62 Chapter 4 Electrochemical Reduction of H2O2 by Nanostructured Hematite Modified Electrodes 69 4.1 Overview of Chapter 4 69 4.2 Results and Discussion 71 4.2.1 Physical characterization 71 4.2.2 Surface area of modified electrode and active species on electrode surface 73 4.2.3 Electrocatalytic activities of various nanostructured hematite to reduction of H2O2 82 4.2.4 Sensing characteristics of nanostructured hematite 92 4.2.5 Other electrochemical behaviors of nanostructured hematite 95 Chapter 5 Conclusion and Suggestion 100 5.1 Conclusion 100 5.2 Suggestion and Outlook 101 5.2.1 Surface modification of iron oxides 101 5.2.2 Mechanism verification and further application 102 Chapter 6 Reference 103 Appendix A Enzymatic Glucose Sensing on Iron Phosphate Modified Hematite Electrodes 109 A.1 Brief Introduction 109 A.2 Experimental Section 111 A.2.1 Preparation of enzyme-loaded nanostructured hematite 111 A.2.2 Set-up for activity measurement of entrapped enzyme 112 A.3 Results and Discussion 116 A.3.1 The results of drop coating method 116 A.3.2 Physical characterization of chitosan film 117 A.3.3 Enzyme activity test (GOx and Horseradish peroxide, HRP) 118 A.4 References 123 Appendix B Set-up for H2O2 Detection in Flow System 124 B.1 Brief Introduction 124 B.2 Experimental Section 125 B.3 Results and Discussion 126 B.4 References 128 Appendix C Curriculum Vitae 129

    1.(a) W. R. Sanderson, Pure and Applied Chemistry, 2000, 72, 1289-1304; (b) C. G. Tsiafoulis, P. N. Trikalitis and M. I. Prodromidis, Electrochemistry Communications, 2005, 7, 1398-1404; (c) S. Chen, R. Yuan, Y. Chai and F. Hu, Microchimica Acta, 2012, 180, 15-32; (d) W. Chen, S. Cai, Q. Q. Ren, W. Wen and Y. D. Zhao, Analyst, 2012, 137, 49-58.
    2.(a) E. Nossol and A. J. Gorgatti Zarbin, J. Mater. Chem., 2012, 22, 1824-1833; (b) D. R. Livingstone, Revue De Medecine Veterinaire, 2003, 154, 427-430; (c) B. Halliwell, M. V. Clement and L. H. Long, Febs Letters, 2000, 486, 10-13; (d) L. H. Long, P. J. Evans and B. Halliwell, Biochemical and Biophysical Research Communications, 1999, 262, 605-609.
    3.A. Hulanicki, S. Glab and F. Ingman, Pure and Applied Chemistry, 1991, 63, 1247-1250.
    4.L. A. Currie, Analytica Chimica Acta, 1999, 391, 105-126.
    5.K. S. Booksh and B. R. Kowalski, Analytical Chemistry, 1994, 66, A782-A791.
    6.H.-P. Loock and P. D. Wentzell, Sensors and Actuators B: Chemical, 2012, 173, 157-163.
    7.J. R. Vig and F. L. Walls, 2000.
    8.D. R. Thevenot, K. Toth, R. A. Durst and G. S. Wilson, Biosensors & Bioelectronics, 2001, 16, 121-131.
    9.L. A. Currie and G. Svehla, Pure and Applied Chemistry, 1994, 66, 595-608.
    10.(a) E. Welsh, Science in Scnool: http://www.scienceinschool.org/2011/issue19/chemiluminescence, 2011; (b) W. Chen, B. Li, C. Xu and L. Wang, Biosens Bioelectron, 2009, 24, 2534-2540.
    11.(a) J. R. Lakowicz, in Principles of fluorescence spectroscopy, Springer, 1999, pp. 1-23; (b) M. C. Y. Chang, A. Pralle, E. Y. Isacoff and C. J. Chang, Journal of the American Chemical Society, 2004, 126, 15392-15393; (c) M. Lan, Y. Di, X. Zhu, T. W. Ng, J. Xia, W. Liu, X. Meng, P. Wang, C. S. Lee and W. Zhang, Chem Commun (Camb), 2015, 51, 15574-15577.
    12.(a) M. Cambridge, JoVE, 2017, 2; (b) K. Sunil and B. Narayana, Bull Environ Contam Toxicol, 2008, 81, 422-426.
    13.(a) N. V. Klassen, D. Marchington and H. C. E. McGowan, Analytical Chemistry, 1994, 66, 2921-2925; (b) S. M. Steinberg, Environ Monit Assess, 2013, 185, 3749-3757.
    14.D. R. Thevenot, K. Toth, R. A. Durst and G. S. Wilson, Analytical Letters, 2001, 34, 635-659.
    15.S. Chen, R. Yuan, Y. Chai, L. Zhang, N. Wang and X. Li, Biosens Bioelectron, 2007, 22, 1268-1274.
    16.(a) J. C. Nebel, Bioinformatics, 2006, 22, 1183-1189; (b) K. Castro, M. Halma, G. S. Machado, G. P. Ricci, G. M. Ucoski, K. J. Ciuffi and S. Nakagaki, Journal of the Brazilian Chemical Society, 2010, 21, 1329-1340; (c) C. J. Reedy, M. M. Elvekrog and B. R. Gibney, Nucleic Acids Res, 2008, 36, D307-313.
    17.(a) N. Akhtar, S. A. El-Safty, M. Khairy and W. A. El-Said, Sensors and Actuators B: Chemical, 2015, 207, 158-166; (b) S. Park, H. Boo and T. D. Chung, Anal Chim Acta, 2006, 556, 46-57.
    18.J. Wang, M. Musameh and Y. H. Lin, Journal of the American Chemical Society, 2003, 125, 2408-2409.
    19.M. A. T. Gilmartin, R. J. Ewen and J. P. Hart, Journal of Electroanalytical Chemistry, 1996, 401, 127-137.
    20.B. Wang, S. Gu, Y. Ding, Y. Chu, Z. Zhang, X. Ba, Q. Zhang and X. Li, Analyst, 2013, 138, 362-367.
    21.(a) D. L. Huber, Small, 2005, 1, 482-501; (b) M. Yuan, J. Li, Y. Yu, Y. Fu, A. Fong and J. Hu, Electroanalysis, 2016, 28, 954-961.
    22.V. Urbanova, M. Magro, A. Gedanken, D. Baratella, F. Vianello and R. Zboril, Chemistry of Materials, 2014, 26, 6653-6673.
    23.L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, Nat Nanotechnol, 2007, 2, 577-583.
    24.(a) A. P. C. Teixeira, J. C. Tristao, M. H. Araujo, L. C. A. Oliveira, F. C. C. Moura, J. D. Ardisson, C. C. Amorim and R. M. Lago, Journal of the Brazilian Chemical Society, 2012, 23, 1579-1593; (b) K. Schulz, R. Schmack, H. W. Klemm, A. Kabelitz, T. Schmidt, F. Emmerling and R. Kraehnert, Chemistry of Materials, 2017, 29, 1724-1734; (c) J. Hrbac, V. Halouzka, R. Zboril, K. Papadopoulos and T. Triantis, Electroanalysis, 2007, 19, 1850-1854.
    25.C. Zhang, H. Ni, R. Chen, W. Zhan, B. Zhang, R. Lei, T. Xiao and Y. Zha, Microchimica Acta, 2015, 182, 1811-1818.
    26.J. Gong, L. Wang, K. Zhao and D. Song, Electrochemistry Communications, 2008, 10, 123-126.
    27.S. Liu, F. Lu, R. Xing and J. J. Zhu, Chemistry, 2011, 17, 620-625.
    28.(a) U. Schwertmann and R. M. Cornell, Iron oxides in the laboratory: preparation and characterization, John Wiley & Sons, 2008; (b) R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses, John Wiley & Sons, 2003; (c) G. S. Parkinson, Surface Science Reports, 2016, 71, 272-365.
    29.A. S. Teja and P.-Y. Koh, Progress in Crystal Growth and Characterization of Materials, 2009, 55, 22-45.
    30.J. Tucek, L. Machala, S. Ono, A. Namai, M. Yoshikiyo, K. Imoto, H. Tokoro, S. Ohkoshi and R. Zboril, Sci Rep, 2015, 5, 15091.
    31.C. A. McCammon, E. DeGrave and A. Pring, Journal of Magnetism and Magnetic Materials, 1996, 152, 33-39.
    32.(a) J. Hrbac and R. Kohen, Drug Development Research, 2000, 50, 516-527; (b) R. Kohen, E. Vellaichamy, J. Hrbac, I. Gati and O. Tirosh, Free Radical Biology and Medicine, 2000, 28, 871-879.
    33.(a) O. Gerber, B. P. Pichon, D. Ihiawakrim, I. Florea, S. Moldovan, O. Ersen, D. Begin, J. M. Greneche, S. Lemonnier, E. Barraud and S. Begin-Colin, Nanoscale, 2017, 9, 305-313; (b) P. Kannan, T. Maiyalagan, E. Marsili, S. Ghosh, J. Niedziolka-Jonsson and M. Jonsson-Niedziolka, Nanoscale, 2016, 8, 843-855.
    34.(a) V. Ebrahimian, A. Nicolle and C. Habchi, AIChE Journal, 2012, 58, 1998-2009; (b) M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal and A. M. Aisiri, in Nanomaterials, InTech, 2011.
    35.S. J. B. Reed, 2005, DOI: 10.1017/cbo9780511610561.005, 41-75.
    36.G. Qian, Y. Li and A. R. Gerson, Surface Science Reports, 2015, 70, 86-133.
    37.J. Elena and M. D. Lucia, Journal of applied engineering sciences, 2012, 2, 35-42.
    38.(a) C. C. Chusuei and D. W. Goodman, Encyclopedia of physical science and technology, 2002, 17, 921-938; (b) J. M. Hollander and W. L. Jolly, Accounts of chemical research, 1970, 3, 193-200.
    39.W. Perkins, J. Chem. Educ, 1987, 64, A269.
    40.C.-P. S. Hsu, Handbook of instrumental techniques for analytical chemistry, 1997, 249.
    41.(a) S. J. Oh, D. C. Cook and H. E. Townsend, Hyperfine Interactions, 1998, 112, 59-65; (b) S. X. Li and L. H. Hihara, Journal of the Electrochemical Society, 2015, 162, C495-C502; (c) L. Bellot-Gurlet, D. Neff, S. Reguer, J. Monnier, M. Saheb and P. Dillmann, Journal of Nano Research, 2009, 8, 147-156.
    42.(a) D. L. A. deFaria, S. V. Silva and M. T. deOliveira, Journal of Raman Spectroscopy, 1997, 28, 873-878; (b) A. Duret and M. Gratzel, Journal of Physical Chemistry B, 2005, 109, 17184-17191.
    43.K. J. McKenzie and F. Marken, Pure and Applied Chemistry, 2001, 73, 1885-1894.
    44.A. Chen, L. Xu, X. Zhang, Z. Yang and S. Yang, ACS Appl Mater Interfaces, 2016, 8, 33765-33774.
    45.P. Rahimi, H. A. Rafiee-Pour, H. Ghourchian, P. Norouzi and M. R. Ganjali, Biosens Bioelectron, 2010, 25, 1301-1306.
    46.F. Marken, D. Patel, C. E. Madden, R. C. Millward and S. Fletcher, New Journal of Chemistry, 2002, 26, 259-263.
    47.(a) F. Soflaee, M. Farahmandjou and T. P. Firoozabadi, Chinese Journal of Physics, 2015, 53, 9; (b) G. Sharma and P. Jeevanandam, Rsc Advances, 2013, 3, 189-200.
    48.M. W. Lu, F. Wang, K. R. Chen, Y. Y. Dai, Q. L. Liao and H. Z. Zhu, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015, 148, 1-6.
    49.(a) T. Y. Yang, H. Y. Kang, K. Jin, S. Park, J. H. Lee, U. Sim, H. Y. Jeong, Y. C. Joo and K. T. Nam, Journal of Materials Chemistry A, 2014, 2, 2297-2305; (b) A. Kay, I. Cesar and M. Gratzel, Journal of the American Chemical Society, 2006, 128, 15714-15721.
    50.T. Radu, C. Iacovita, D. Benea and R. Turcu, Applied Surface Science, 2017, 405, 337-343.
    51.Y. J. Yin, Y. J. Hu, P. Wu, H. Zhang and C. X. Cai, Chemical Communications, 2012, 48, 2137-2139.
    52.F. F. H. Aragón, J. D. Ardisson, J. C. R. Aquino, I. Gonzalez, W. A. A. Macedo, J. A. H. Coaquira, J. Mantilla, S. W. da Silva and P. C. Morais, Thin Solid Films, 2016, 607, 50-54.
    53.(a) N. S. McIntyre and D. G. Zetaruk, Analytical Chemistry, 1977, 49, 1521-1529; (b) A. Grosvenor, B. Kobe, M. Biesinger and N. McIntyre, Surface and Interface Analysis, 2004, 36, 1564-1574.
    54.S. Poulin, R. Franca, L. Moreau-Bélanger and E. Sacher, The Journal of Physical Chemistry C, 2010, 114, 10711-10718.
    55.(a) M. Hajjizadeh, A. Jabbari, H. Heli, A. A. Moosavi-Movahedi, A. Shafiee and K. Karimian, Anal Biochem, 2008, 373, 337-348; (b) E. Laviron, Journal of Electroanalytical Chemistry, 1979, 101, 19-28; (c) H. Yaghoubian, V. Soltani-Nejad and S. Roodsaz, International Journal of Electrochemical Science, 2010, 5, 1411-1421.
    56.(a) A. Masek and E. Chrzescijanska, International Journal of Electrochemical Science, 2015, 10, 5276-5290; (b) M. Reza Shishehbore, H. R. Zare and D. Nematollahi, Journal of Electroanalytical Chemistry, 2012, 665, 45-51; (c) A. K. Timbola, C. D. Souza, C. Soldi, M. G. Pizzolatti and A. Spinelli, Journal of Applied Electrochemistry, 2007, 37, 617-624.
    57.E. B. Monroe and M. L. Heien, Analytical Chemistry, 2013, 85, 6185-6189.
    58.J. H. Bae, Y. R. Kim, R. Soyoung Kim and T. D. Chung, Phys Chem Chem Phys, 2013, 15, 10645-10653.
    59.(a) Y. Li, Y.-Y. Song, C. Yang and X.-H. Xia, Electrochemistry Communications, 2007, 9, 981-988; (b) C. Scheller, G. Arendt, T. Nolting, C. Antke, S. Sopper, M. Maschke, M. Obermann, A. Angerer, I. W. Husstedt, F. Meisner, E. Neuen-Jacob, H. W. Muller, P. Carey, V. Ter Meulen, P. Riederer and E. Koutsilieri, J Neural Transm (Vienna), 2010, 117, 699-705.
    60.J. Gong, L. Wang, K. Zhao and D. Song, Electrochemistry Communications, 2008, 10, 123-126.
    61.Z. Liu, B. Zhao, Y. Shi, C. Guo, H. Yang and Z. Li, Talanta, 2010, 81, 1650-1654.
    62.L. Zhang, Y. Ni, X. Wang and G. Zhao, Talanta, 2010, 82, 196-201.
    63.A. K. Dutta, S. K. Maji, D. N. Srivastava, A. Mondal, P. Biswas, P. Paul and B. Adhikary, Journal of Molecular Catalysis a-Chemical, 2012, 360, 71-77.
    64.D. Baratella, M. Magro, G. Sinigaglia, R. Zboril, G. Salviulo and F. Vianello, Biosensors & Bioelectronics, 2013, 45, 13-18.
    65.M. Magro, D. Baratella, G. Salviulo, K. Polakova, G. Zoppellaro, J. Tucek, J. Kaslik, R. Zboril and F. Vianello, Biosensors & Bioelectronics, 2014, 52, 159-165.
    66.L. Zhang, Y. Zhai, N. Gao, D. Wen and S. Dong, Electrochemistry Communications, 2008, 10, 1524-1526.
    67.N. Puvvada, P. K. Panigrahi, D. Mandal and A. Pathak, Rsc Advances, 2012, 2, 3270.
    68.J. Wang, Chemical Reviews, 2008, 108, 814-825.
    69.J. Morales, J. L. Tirado and C. Valera, Journal of the American Ceramic Society, 1989, 72, 1244-1246.
    70.H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai and D. L. Peng, Sci Rep, 2013, 3, 2323.
    71.S. Trasatti and O. A. Petrii, Pure and Applied Chemistry, 1991, 63, 711-734.
    72.B. V. Tilak, C. G. Rader and S. K. Rangarajan, Journal of the Electrochemical Society, 1977, 124, 1879-1886.
    73.(a) J. Hong, Y. X. Zhao, B. L. Xiao, A. A. Moosavi-Movahedi, H. Ghourchian and N. Sheibani, Sensors (Basel), 2013, 13, 8595-8611; (b) L. Fotouhi, M. Fatollahzadeh and M. M. Heravi, International Journal of Electrochemical Science, 2012, 7, 3919-3928.
    74.M. S. Lin and H. J. Leu, Electroanalysis, 2005, 17, 2068-2073.
    75.(a) Z. L. Liu, B. Zhao, Y. Shi, C. L. Guo, H. B. Yang and Z. A. Li, Talanta, 2010, 81, 1650-1654; (b) L. Zhang, Y. H. Ni, X. H. Wang and G. C. Zhao, Talanta, 2010, 82, 196-201.
    76.C. Liu, J. M. Zachara, N. S. Foster and J. Strickland, Environmental Science & Technology, 2007, 41, 7730-7735.
    77.(a) F. Pariente, E. Lorenzo, F. Tobalina and H. D. Abruna, Analytical Chemistry, 1995, 67, 3936-3944; (b) L. Fotouhi, F. Raei, M. M. Heravi and D. Nematollahi, Journal of Electroanalytical Chemistry, 2010, 639, 15-20.
    78.K. Govindan, M. Raja, M. Noel and E. J. James, J Hazard Mater, 2014, 272, 42-51.
    Appendix A
    1.J. Wang, Chem. Rev., 2008, 108, 814-825.
    2.C. Zhang, H. Ni, R. Chen, W. Zhan, B. Zhang, R. Lei, T. Xiao and Y. Zha, Microchimica Acta, 2015, 182, 1811-1818.
    3.Z. R. Marand, N. Shahtahmassebi, M. R. Housaindokht, G. H. Rounaghi and I. Razavipanah, Electroanalysis, 2014, 26, 840-848.
    4.(a) E. McCafferty, J. Electrochem. Soc., 1999, 146, 2863-2869; (b) Y. Zhai, S. Zhai, G. Chen, K. Zhang, Q. Yue, L. Wang, J. Liu and J. Jia, J. Electroanal. Chem., 2011, 656, 198-205; (c) K. Liu, H. Wang, Q. Wu, J. Zhao, Z. Sun and S. Xue, Journal of Power Sources, 2015, 283, 381-388.
    5.H. Yin, Q. Ma, Y. Zhou, S. Ai and L. Zhu, Electrochimica Acta, 2010, 55, 7102-7108.
    6.F. G. Menezes, A. C. O. Neves, D. F. d. Lima, S. D. Lourenço, L. C. d. Silva and K. M. G. d. Lima, Química Nova, 2015, DOI: 10.5935/0100-4042.20150040.
    7.C. D. Fernando and P. Soysa, MethodsX, 2015, 2, 283-291.
    Appendix B
    1.J. Ruzicka and E. H. Hansen, Flow injection analysis, John Wiley & Sons, 1988.
    2.A. A. Karyakin, E. E. Karyakina and L. Gorton, Talanta, 1996, 43, 1597-1606.
    3.C. M. A. Brett, A. M. O. Brett and L. C. Mitoseriu, Electroanalysis, 1995, 7, 225-229.
    4.A. Rose, F. W. Scheller, U. Wollenberger and D. Pfeiffer, Fresenius J. Anal. Chem., 2001, 369, 145-152.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE