| 研究生: |
郭立楷 Kuo, Li-kai |
|---|---|
| 論文名稱: |
深層岩體熱力-水力-力學偶合行為之研究 A Study of Coupled Thermo-Hydro-Mechanical Behaviors in the Deep Rocks |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 核廢料深層處置 、FLAC3D 、TOUGH2 、核廢料 |
| 外文關鍵詞: | TOUGH2, FLAC3D, geological disposal, spent nuclear fuel |
| 相關次數: | 點閱:111 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核廢料為具有長半衰期之高放射性物質,對人類生活環境與生物圈具有威脅性,須以能確保長期隔絕之方式加以處理。經過世界各核能使用先進國家之研究顯示,較穩定且安全之處置法為深層地質處置(Deep Geological Disposal)。
本研究以核廢料深層處置為基本概念,並參考瑞典之相關研究,考慮膨潤土與回填材料所具備之熱性質及力學特性,藉由FLAC3D與TOUGH2兩套數值分析軟體分析深覆蓋最終處置場之周圍岩體,探討核廢料處置後其周圍深層飽和岩體之熱力-水力-力學偶合 (CoupledThermo-Hydro-Mechanical)行為。
經研究並多方面分析後認為於台灣地區500m深之處置場中,後發現雙處置坑間距越小其溫度場間的影響、應力的作用、塑性區的範圍及位移量都有變大的趨勢。因此考慮最佳空間利用之最佳化配置來提供處置場之使用效率,以降低核廢料之處理成本;本研究認為於台灣地區500m深之處置場中,採用初始地溫為30~35℃之結晶岩層,處置坑之間距8公尺到10公尺,處置隧道之間距20公尺到25公尺較為適宜。而處置場址中塑性區域,多為其安全性與穩定性之參考依據,並於該發生區域須多採以補強之措施,以確保最終處置場址可持續其阻絕功能。
Because of inherent radioactivity, the spent nuclear fuel would threaten our environment and also the biosphere. We must take steps to permanently exclude the spent nuclear fuel away from our activity environment in order to avoid any possible danger. The method of deep geological disposal is regarded by the leading countries of the advanced technology in nuclear as the most stable and safe method.
This research is based upon the idea of deep geological disposal proposed by Swedish research groups. This thesis considered many factors, including the thermal and mechanical properties of the bentonite and backfill. By using the numerical analysis package, FLAC3D and TOUGH2, this thesis attempted to analyze the distributions of the temperature, hydraulic and mechanical fields of the geological repository disturbed by waste canisters.
Several scenarios are taken into account: a single storage hole of different initial temperatures, and two-storage-hole and two-tunnel of different distances. This thesis suggests that the appropriate distances from canister to canister are 6~8m and those from tunnel to tunnel are 25m under the conditions of initial temperature 26~28℃ and 500m in-situ in Taiwan crystalline bedrock. Through stress analysis, this study shows that the tensile regions are the most critical ones where should be reinforced to ensure the capability of isolation of the disposal site.
1.王文盛、郭文振,熱傳遞學(上),乾泰出版社,1978。
2.王俊明,高溫下脆性岩石之力學與物理性質,國立交通大學土木工程研究所碩士論文,1995。
3.林士哲,金崙地區溫泉資源調查分析之研究,國立成功大學資源工程研究所碩士論文,2003。
4.林宏明,石英砂岩與大理石的力學特性及組成律之研究,國立成功大學土木工程研究所碩士論文,1992。
5.林衍行,岩石隧道變形行為研究,國立台灣工業技術學院碩士論文,1991。
6.林擎天,多孔介質之三維彈性理論解析,中華工學院土木工程研究所碩士論文,1994。
7.周業泗,飽和即未飽和地層傳輸行為之研究-以嘉義白水湖、蘭嶼貯存場為例,國立成功大學資源工程研究所碩士論文,1999。
8.洪錦雄、莊文壽、劉凌振、董家寶,我國用過核燃料長程處置潛在母岩特性調查與評估階段-前二年計畫,功能/安全評估研究-建立深層處置場初期功能評估技術(I),核能研究所,2001。
9.范振峰,用過核燃料地下處置場之熱應力與地下水影響分析,國立中興大學碩士論文,2006
10.高世鍊,開挖中隧道變形行為之初步研究,國立成功大學土木工程研究所碩士論文,1998。
11.陳冠志,異質性土壤中二相流及溶質傳輸行為之研究,國立成功大學資源工程研究所碩士論文,2000。
12.黃偉慶,放射性廢料處置場緩衝及回填材料物理性質研究,行政院原子能委員會,2000。
13.劉台生,TOUGH2簡易使用手冊,工業技術研究院能源與資源研究所,2001。
14.劉尚志、張璞、焦自強,高放射性廢料深層地質處置,原子能委員會核能彙刊,第24卷第5期,1988。
15.歐陽湘、戴國邦、董倫道等,我國用過核燃料長程處置計畫-第三階段區域調查前四年工作計畫-第二工作年度計畫-瑞典SKB(國外人員訓練)出國報告,核能研究所,1995。
16.潘國樑,應用環境地質學,地景出版社,1993。
17.賴成銑,洪浩源,我國用過核燃料長程處置潛在母岩特性調查與評估階段-發展初步功能/安全評估模式(第一年計畫)-地質圈評估技術,核能研究所,2002。
18.薛禹群,地下水動力學原理,地質出版社,1992。
19.戴豪君,深層岩體熱力-水力-力學偶合行為之初步研究,國立成功大學資源工程研究所碩士論文,2003。
20.鄺寶山、王文禮 FLAC程式於隧道工程之實例分析,地工技術,第41期,pp. 50-61,1993。
21.鍾柏仁,核廢料深層處置進場岩石熱力學行為初步研究,國立成功大學資源工程研究所碩士論文,2001。
22.Aversa, S. and Evangelista, A., Thermal Expansion of Neapolitan Yellow Tuff. Rock Mech. & Rock Eng., Vol. 26, No. 4, pp.281-306, 1993.
23.Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses. Wiley, New York, 1960.
24.Bauer, S.J. and Johnson, B., Effects of Slow Uniform Heating on the Physical Properties of the Westerly and Charcoal Granites. Proc. 20th Symp. on Rock Mech., Austin, Texas, ASCE, pp.7-18, 1979.
25.Bejan, A., Lage, J.L., Heat transfer from a surface covered with hair.Convective Heat and Mass Transfer in Porous Media(eds. Kakac, S., Kilkis, B., Kulacki, F.A., Arinc., F.), Kluwer Academic, Dordrecht, pp.823-845, 1991.
26.Becker, A.A., The Boundary Element Method in Engineering. Ph.D. Thesis, University of Nottingham, U.K., 1992.
27.Clark, S.J., Handbook of Physical Constants. Geological Society of America, New York, 1966.
28.Crank, J., The Mathematics of Diffusion: 2nd Edition, Oxford: Clarendon Press, 1975.
29.Chijimatsu, M., Fujita, T., Sugita, Y., Amemiya, K., Kobyashi, A., Field experiment, results and THM behavior in the Kamaishi mine experiment. International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp.67-78, 2001.
30.Cleall, P.j. Mekhuish, T.A. Thomas, H.R., Modelling the Three-Dimensional Behaviour of a Protoype Nuclear Waste Repository, U.K., 2006
31.Faust, C.R., and Mercer, J.W., Summary of Our Research in Geothermal Reservoir Simulation, Proc. Workshop on Geothermal Reservior Engineering, Stanford University, Stanford, CA, SGP-TR-12, 1975.
32.Flix, B., Lebon, P., Miguez, R. and Plas, F., A review of the ANDRA’s research programmes on the thermo-hydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Engineering Geology, Vol. 41, pp.35-50, 1996.
33.Hanley, E.J., Dewitt, D.P. and Roy, R.F., The Thermal Diffusivity of Eight Well-Characterized Tocks for the Temperature Range 300-1000°K. Engineering Geology, Vol. 122, pp.31-47, 1978.
34.Hoek, E. and Brown, E.T., Empirical Strength Criterion for Rock Masses. J. of the Geotechnical Engineering, ASCE, Vol. 106, NO. GT9, pp.1013-1035, 1980.
35.Hoek, E. and Brown, E.T., Underground Excavations in Rock. IMM, London, 1980.
36.Heuze, F.E., High Temperature Mechanical, Physical and Thermal Properties off Granitic Rock-A Review. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 20, No. 1, pp.3-10, 1983.
37.Hoek, E. and Brown, E.T., Empirical Strength Criterion for Rock Masses Strength. Int. J. of Rock Mech. Sci. & Geomech. Abstr., Vol. 34, pp. 1165-1186, 1997.
38.Hokmark, H., Acceptance of Emplacement Hole Positions-Stage 1 Thermomechanical Study. Engineering Geology, Vol. 49, pp.215-222, 1998.
39.Hakami, E. and Olofsson, O., Thermo-Mechanical Effects Around A Radioactive Waste Repository. FLAC and Numerical Modeling in Geomechanics, pp.311-316, 1999.
40.Itasca Consulting Group, Inc., Fast Lagrangian Analysis of Continua in 3 Dimensions User's Manual. Minneapolis, Minnesota, U.S.A., 1994.
41.Jumikis, A.R., Rock Mechanics. 2nd Edition, Trans. Tech. Pubns., Germany, 1983.
42.Karlekar, B.V. and Desmond, R.M., Engineering Heat Transfer. St. Paul, West Pub. Co., 1977.
43.KBS, Final Storage of Spent Nuclear Fuel—KBS-3. Swedish Nuclear Fuel Supply Co./Division KBS, Stockholm, Sweden, 1983.
44.Mahtab, M.A. and Wiles, T., Immobilized Waste Vault: Room-and-Pillar Thermal Rock Mechanics Analyses. AECL TR-54, 1980.
45.Nowacki, W., Thermoelasticity. New York: Addison-Wesley, 1962.
46.NAGRA, Project Gewahr 1985: NAGRA (Switzerland) NGB 85-09. 1985.
47.Nield, D.A., Bejan, A., Convection in porous media, Springer-Verlag, 1992.
48.Onofrei, C., Gray, M., Modelling hygro-thermo-mechanical behaviour ofengineered clay barriers–Validation phase. Engineering Geology, Vol. 41, pp.301-318, 1996.
49.zisik, M.N., Heat Conduction. 2nd Edition, John Wiley & Sons Inc., N.Y., 1993.
50.Pritchett, J.W., Numerical Calculation of Multiphase Fluid and Heat Flow in Hydrothermal Reservoirs, Proc. Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, pp.201-205,SGP-TR-12, 1975.
51.Pruess, K., Zerazn., J.M. Schroeder., R. C. Witherspoon., Descripition of the Three Dimensional Two-Phase Simulator SHAFT78 for Use in Geothermal Reservoir Studies, paper SEP 7699, presented at the Fifth SPE Symposium on Reservoir Simulation, Denver, CO, February 1979.
52.Pruess, K., and Schroeder., R.C., SHAFT 79 User’s Manual, Lawrence Berkeley Laboratory Report LBL-10861, Berkeley, CA, March 1980.
53.Priest, S.D. and Brown, E.T., Probabilistic Stability Analysis Variable Rock Slopes. Trans. Instn. Min. Metall., Vol. 92, No. A1-A2, 1983.
54.Pusch, R., and Touret, O., Heat effects on soft Na bentonite gels. Geologiska Freningens i Stockholm Frhandlinga, 110(2), PP.183-190, 1988.
55.Pusch, R., and Borgesson, L., PASS-Project on Alternative Systems Study. Performance Assessment of Bentonite Clay Barrier in Three Repository Concepts: VDH, KBS-3 and VLH, SKB, TR 92-40, Stockholm, Sweden, 1992.
56.Pruess, K., Oldenburg, C., Moridis, G., TOUGH2 User’s Guide, Version 2.0. Earth Sciences Division, Lawrence Berkeley National Laboratory, 1999.
57.Rutqvist, J., Brgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L., Noorishad, J., Tsang, C.-F., Coupled thermo-hydro-mechanical analysis of aheater test in fractured rock and bentonite at Kamaishi Mine–comparison of field results to predictions of four finite element codes. International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp.129-142, 2001.
58.Rutqvist, J., Wu, Y.-S., Tsang, C.-F. and Bodvarsson, G., A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp.429-442, 2002.
59.Rutqvist, J., Tsang, C.-F., Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain. Journal of Contaminant Hydrology, Vol. 62-63, pp.637-652, 2003.
60.Rutqvist, J., Tsang, C.-F., TOUGH-FLAC: A numerical simulator for analysis of coupled thermal--hydrologic-mechanical processes in fractured and porous geological media under multi-phase flow conditions. Proceedings, TOUGH Symposium 2003. Lawrence Berkeley National Laboratory, Berkeley ,California, May 12-14, 2003.
61.Scheidegger, A.E., The Physics of Flow through Porous Media, University of Toronto Press, Toronto, 1974.
62.SKB, Final Repository for Radioactive Operational Waste-SFR. Swedish Nuclear Fuel and Waste Management Co., 1995.
63.SKB, Plan 96-Cost for Management of the Radioactive Waste From Nuclear Power Produciton. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1996.
64.Site-94, Deep Repository Performance Assessment Project. Swedish, SKB Report 96:36, Vol. 1-2, 1996.
65.SKB, Activities-1998: Svensk Karnbranslehantering AB. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1999.
66.SKB, Stepwise Decision-Making and Options for Retrieval in the Swedish KBS-3 Concept to Be Presented at the International Seminar on Retrieval of HLW and Spent Nuclear Fuel. Saltsjbaden 24-27, Tnis Papp, 1999.
67.SKB, sp Hard Rock Laboratory-Annual Report 1998: TR 99-10. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1999.
68.Svemar, C. and Olsson, O., KBS-3 System Design — Then, Now and in the Future. SKB-sp Hard Rock Laboratory, Sweden, 1999.
69.KAERI, The 2000 Joint Workshop on High-Level Radwaste Disposal Between Korea and Japan. Korea, 2000.
70.Tiktinsky, D.H., Numerical Parametric Sensitivity Study of Thermal and Mechanics Properties for A High Level Nuclear Waste Repositroy. Proc. of the 29th U.S. Symp. on Rock Mech., pp.429-439, 1988.
71.Thunvik, R. and Braester, C., Heat Propagation from a Radioactive Waste Repository. SKB TR 91-61, Stockholm, 1991.
72.Tsui, K.K., Lee, C.F., Tsai, A. and Harris, N.L., Thermaomechanical Modelling of A Nuclear Waste Disposal Vault in Crystalline Hard Rock. Proc. of the 4th Int. Conference on Numerical Methods in Geomech., Balkema, 1982.
73.Tsang, C.-F., Stephansson, O., and Hudson, J.A., A discussion of thermo-hydro-mechanical(THM)processes associated with nuclear waste repositories. International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp.397-402, 2000.
74.Wai, R.S.C., Lo, K.Y. and Rowe, R.K., Thermal Stress Analysis in Tock with Nonlinear Properties. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 19, pp.211-220, 1982.
75.Zienkiewicz, O.C. and Taylor, R.T., The Finite Element Mehtod. 4th Edition, McGraw-Hill, London, 1991.