簡易檢索 / 詳目顯示

研究生: 謝旻昌
Hsieh, Min-chang
論文名稱: 多孔幾丁聚醣薄膜對銅離子的吸附與脫附機制之研究
Study of copper ion adsorption and desorption mechanism upon the porous chitosan film
指導教授: 廖峻德
Liao, Jiunn-der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 銅離子吸附幾丁聚醣薄膜胺基脫附
外文關鍵詞: amide group, desorption, adsorption of copper ion, Chitosan film
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾丁聚醣為一種價格便宜且可廣泛的被應用的的天然高分子,胺基可以與重金屬離子形成鍵結而吸附,因此本研究利用冷凍乾燥製程並使用酒精取代氫氧化鈉來將薄膜內的醋酸置換出來。採用掃瞄式電子顯微鏡觀察表面形貌及拉伸試驗機檢測製程時不同階段的機械性質;以三聚磷酸鈉為交聯劑增加對不同化學環境的抵抗能力,並探討在不同pH值或溫度對於吸附和脫附銅離子的影響,利用硝酸進行脫附試驗,使用原子吸收光譜儀檢測銅離子吸附和脫附之間的效率轉換情形;再搭配X光光電子光譜儀及傅立葉轉換紅外光譜儀對化學鍵結變化情形做分析。
    實驗結果顯示:使用酒精置換醋酸的幾丁聚醣薄膜可以讓薄膜孔洞直徑約170~240 μm,並在三聚磷酸鈉交聯後平均仍有190 μm。加上交聯劑後的幾丁聚醣薄膜的機械和化學性直接有明顯的變化。從化學分析知,幾丁聚醣對於銅離子的吸附是由於上面的胺基的存在造成,而本製程置備出來的幾丁聚醣薄膜擁有適當的孔洞大小可以讓銅離子輕易的擴散於其中。銅離子以40 oC、pH=5環境下的吸附量最多,吸附量達52.41 mg/g。
    由實驗結果推論幾丁聚醣吸附或脫附銅離子的機制如下:(1) 乾燥後由XPS發現大量的Cu-O鍵結和Cu2+訊號,和胺基產生庫倫靜電力相互吸引;(2) 當pH值降低,會造成胺基質子化程度增加而減少用來吸附銅離子的負電荷位置;(3) 脫附則是發生於幾丁聚醣的胺基吸引氫離子或是螯合。然而,幾丁聚醣膜的第一次脫附效率約為75 %,而第二次則為60%。顯示出這樣的環境處理可以使幾丁聚醣於銅離子吸附更為實用。

    Chitosan is an inexpensive and a widely available nature polymer; its amine group is usually competent to bind with heavy metal ions. In this study, chitosan films were prepared by freeze-drying procedure, and replaced sodium hydroxide by using alcohol to metathesis acetic acid inner the thin film. Morphologies and mechanical properties of the as-prepared chitosan films in different processing stages were measured by Scanning Electron Microscope and MTS. In addition, the chitosan films were purposely cross-linked with tripolyphosphate to increase the resistance of chemicals in different processing stages, such as the pH values and the temperature for copper ion adsorption/desorption. Desorption rate of copper ions was tested by nitric acid solution and measured by Atomic Adsorption spectrometry. Chemical structures of the tested chitosan films were characterized by Fourier Transform Infrared Spectrometer and X-ray Photoelectron Spectroscopy. The proposed mechanism for copper ion adsorption and desorption was thereafter studied.
    Experimental results demonstrated that the pore sizes of the pristine and the cross-linked chitosan films were about 170~240 and 190 μm, respectively. Mechanical and chemical properties of the cross-lined chitosan film were significantly enhanced. From the chemical analyses, the adsorption of copper ions was resulted by the presence of amine group in chitosan and enhanced by the easily-diffusion (or the appropriate porosity) of copper ions in the chitosan matrix. The adsorption capacity was maximized at 52.41 mg/g under 40 oC and the pH value of 5.
    The apparent mechanism of the copper ion adsorption/desorption can be proposed as: (1) The bonding of copper-oxygen and copper ion attract amine group each other with electrostatic attraction in the dryied thin film and find copper-oxygen was the mainly bonding from XPS; (2) As decreased the pH value in solution, the protonation of the amine group also increases, leading to the rise of the negatively-charged sites for binding with copper ions; (3) The desorption occurs when the amine group is attacked and chelated by H+. Moreover, the first and second desorption efficiencies were estimated as 75 % and 60 %, which is still promising for the preliminary treatment on the copper ions adsorption.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 序論 1 1.1 前言 1 1.2 研究動機 3 1.3 文獻回顧 3 1.3.1 重金屬離子吸附 3 1.3.2 幾丁聚醣的交聯及重金屬的吸附和脫附 5 1.4 研究大綱和目的 8 第二章 理論基礎 10 2.1重金屬 10 2.1.1 重金屬的定義 10 2.1.2 金屬的污染源及危害 10 2.1.3 去除重金屬的方法 11 2.2 幾丁聚醣 11 2.2.1 幾丁類物質的由來 11 2.2.2 幾丁質/幾丁聚醣的簡介 12 2.2.3 幾丁聚醣的製備 14 2.2.4 幾丁聚醣的物理改質 14 2.2.5 幾丁聚醣的化學改質 16 2.2.6 幾丁聚醣的應用 17 2.3 膠體的簡介 18 2.4 幾丁聚醣對重金屬離子的吸附 20 2.4.1 幾丁聚醣的吸附原理 20 2.4.2 吸附過程 20 2.4.3 吸附方程式 21 2.4.4 吸附特性的主要影響因子 22 2.5 錯離子 22 第三章 實驗方法與設備 24 3.1 實驗藥品 24 3.2 實驗儀器 24 3.2.1低溫冷凍乾燥機 24 3.2.2 X光光電子能譜儀 26 3.2.3 拉伸試驗機 29 3.2.4 掃描式電子顯微鏡 29 3.2.5減弱式全反射-傅立葉轉換紅外光譜儀 30 3.2.6 原子吸收光譜儀 32 3.2.8 其他相關裝置與儀器 34 3.3 實驗方法 34 3.3.1 多孔性幾丁聚醣薄膜膠體的製備 34 3.3.2銅離子的吸附試驗 35 3.3.3 對銅離子的脫附 35 3.3.4 機械性質分析 35 3.3.5 表面化學分析及元素鑑定 36 3.3.6掃描式電子顯微鏡察表面型態 36 第四章 結果與討論 37 4.1幾丁聚醣薄膜的製備及表面型態 37 4.1.1 置換醋酸溶劑的選擇 37 4.1.2 加入交聯劑的影響 40 4.1.3 薄膜製備過程的表面鍵結分析 41 4.2 幾丁聚醣膜對銅離子的吸附分析 43 4.2.1銅離子吸附量的現象分析 43 4.2.2 不同溫度及不同pH值對銅離子吸附量的影響 45 4.2.3 幾丁聚醣對銅離子吸附的表面結構變化分析 48 4.2.4 幾丁聚醣對銅離子吸附的化學鍵結分析 49 4.3 幾丁聚醣膜對銅離子的脫附分析 56 4.3.1 脫附溶劑的使用選擇 56 4.3.2 幾丁聚醣薄膜的脫附及其轉換效率 57 4.4 幾丁聚醣薄膜的機械性質測試 59 4.5 幾丁聚醣膜脫附後的的表面化學結構分析 61 4.5.1 表面化學結構變化分析 61 第五章 結論 66 參考文獻 67

    1.楊肇政,「污染防治」,全威圖書有限公司,6-14,2001。
    2.L. Friberg, G. F. Nordberg and B. Vouk, “Handbook on
    the technology of metal”, Elsevier, Amsterdam,1979。
    3.徐薇如,「幾丁聚醣/藻酸鈣生物高分子對重金屬吸附行為之研
    究」,國立交通大學應用化學研究所碩士論文, 2-3,2000。
    4.S. V. Madihally and H. W. Matthew, “Porous chitosan
    scaffolds for tissue engineering”, Biomaterial, Vol.
    20, 1133-1142, 1999。
    5.K. L. B. Chang, G. Tsai, J. Lee, W. R. Fu,
    “Heterogeneous N-deacetylation of Chitin in Alkaline
    solution”, Carbohydrate Research, Vol. 303, 327-332,
    1997。
    6.陳澄河,「蝦蟹殼傳奇」,科學發展,369期,62-67,2003。
    7.M. Mohsen-Niaa, P. Montazeri and H. Modarress, “Removal
    of Cu2+ and Ni2+ from wastewater with a chelating agent
    and reverse osmosis processes”, Desalination, Vol.217 ,
    276–281, 2007。
    8.O. Souilah, D, E. Akretche and M. Amara, “Water reuse
    of an industrial effluent by means of
    electrodeionisation”, Desalination, Vol. 167, 49-54,
    2004。
    9.B. Biskup and B. Subotic, “Kinetic analysis of the
    exchange processes between sodium ions from zeolite A
    and cadmium, copper and nickel ions from solutions”,
    Separation and Purification Technology, Vol. 37, 17-31,
    2004。
    10.J. N. Lester, “Heavy metals in wastewater and sludge
    treatment process”, CRC Press, Chap. 4, 83-86, 1987。
    11.C. Faur-Brasquet, Z. Reddad and K. Kadirvelu,
    “Modeling the adsorption of metal ions (Cu+2 , Ni+2 ,
    Pb+2) onto ACCs using surface complexation models”,
    Applied Surface Science, Vol. 196, 356-365, 2002。
    12.Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D.
    Wu, and B. Wei, “Lead adsorption on carbon
    nanotubes”, Chemical Physics Letters, Vol. 357, 263-
    266, 2002。
    13.E. S. Amany, E. N. Ahmed, K. Azza, A. Ola, “Removal of
    toxic chromium from wastewater using green alga Ulva
    lactuca and its activated carbon”, Journal of
    Hazardous Materials, Vol. 48, 216-228, 2007。
    14.A. Kapoor and T. Viraraghavan, “Fungal biosorption —
    an alternative treatment option for heavy metal bearing
    wastewaters: a review”, Bioresource Technology, Vol.
    53, 195-206, 1995。
    15.O. Gyliene, R. Rekertas and M. Salkauskas ”Removal of
    free and complexed heavy-metal ions by sorbents
    produced from fly (Musca domestica) larva shells”,
    Water Research, Vol. 36, 4128-4136, 2002。
    16.O. A. C. Monteiro Jr and C. Airoldi, “Some
    Thermodynamic Data on Copper–Chitin and Copper–
    Chitosan Biopolymer Interactions”, Journal of Colloid
    and Interface Science, Vol. 212, 212-219, 1999。
    17.Y. Kawamura, M. Mitsuhashi, H. Yoshida and H. Tanibe,
    “Adsorption of Metal Ions on Polyaminated Highly Porous
    Chitosan Chelating Resin”, Industrial Engineering
    Chemical Research, Vol. 32, 386-391, 1993。
    18.S. T. Lee, F. L. Mi, Y. J. Shen and S. S. Shyu,
    “Equilibrium and kinetic studies of copper(II) ion
    uptake by chitosan-tripolyphosphate chelating resin”,
    Polymer, Vol. 42, 1879-1892, 2001。
    19.X. Z. Shu, K. J. Zhu and W. Song, ”Novel pH-sensitive
    citrate cross-linked chitosan film for drug controlled
    release”, International Journal of Pharmaceutics, Vol.
    212, 19-28,2001。
    20.Y. Koyama and A. Taniguchi, “Cross-linking of chitosan
    for enhanced cupric ion adsorption”, Journal of
    Applied Polymer Science, Vol. 31, 1951-1954, 1986。
    21.侯孟新,”多孔幾丁聚醣改質膠體對於不同重金屬離子之吸附研
    究”,國立成功大學材料科學及工程學系, 31-46,2006。
    22.C. Y. Hsieh, S. P. Tsai, M. H. Ho, D. M. Wang, C. E.
    Liu, C. H. Hsieh, H. C. Tseng and H. J. Hsieh, “
    Analysis of freeze-gelation and cross-linking processes
    for prepare porous chitosan scaffolds”, Carbohydrate
    Polymers, Vol. 67, 124-132, 2007。
    23.L. Jin and R. Bai, “Mechanisms of lead adsorption on
    chitosan/PVA hydrogel beads”, Langmuir, Vol. 18, 9765-
    9770, 2002。
    24.S. Sun and A. Wang, “Adsorption kinetics of Cu(Ⅱ)
    ions using N,O-carboxymethyl- chitosan”, Journal of
    Hazardous Materials B, Vol. 131, 103-111, 2006。
    25.L. Dambies, C. Guimon, S. Yiacoumi and E. Guibal,
    “Characterization of metal ion interactions with
    chitosan by photoelectron spectroscopy”, Colloids and
    Surfaces A, Vol. 177, 203-214, 2001。
    26.M. Rhazi, J. Desbrieres, A. Tolaimate, M. Rinaudo, P.
    Vottero and A. Alagui, “Contribution to the study of
    the complexation of copper by chitosan and oligomers”,
    Polymer, Vol. 43, 1267-1276, 2002。
    27.張志仲,”可降解及多孔性之適強度幾丁聚醣薄膜膠體對銅離子
    吸附的研究”,國立成功大學材料科學及工程學系, 33-52,
    2007。
    28.S. R. Shukla and R. S. Pai, “Adsorption of Cu(Ⅱ)、Ni
    (Ⅱ)、Zn(Ⅱ) on modified jute fibres”, Bioresource
    technology, Vol. 95, 1430-1438, 2005。
    29.行政院環保署,2008。
    30.N. Chiron, R. Guilet and E. Deydier, “Adsorption of Cu
    and Pb onto grafted silica : isotherms and kinetic
    models”, Water Research, Vol. 37, 3079-3086, 2003.
    31.經濟部工業局工業污染防治技術計畫專案,2003。
    32.許漢平,以食鹽為造孔劑製備備吸附能力幾丁聚醣薄膜之應用,
    國立聯合大學化學工程學系碩士論文, 3-4,2006。
    33.J. Brugnerotto, J. Lizardi, F.M. Goycoolea and M.
    Rinaudo,”An infrared investigation in relation with
    chitin and chitosan characterization”, polymer, Vol.
    42, 3569-3580, 2001。
    34.M.A.A. Muzzarelli, C. Jeuniaux, G.W. Gooday, “Chitin
    in nature and technology”, Plenum press, 1986。
    35.S. Babel, T.A. Kurniawan, “Low-cost adsorbents for
    heavy metals uptake from contaminated water: a
    review”, Journal of Hazard Material, Vol.97, 219-243,
    2003。
    36.賴淑琪,「水產廢棄蝦、蟹外殼之高度利用」,食品工業,
    Vol. 11, 23,1979。
    37.K. M. Rudall, “Chitin and its association with other
    molecules” Journal of Polymer Science Part C, Vol .
    28, 83-102, 1969。
    38.X. Wang, Y. Du and H. Liu, “Preparation,
    characterization and antimicrobial activity of chitosan-
    Zn complex”, Carbohydrate Polymer, Vol. 56, 21-26,
    2004。
    39.L. G. Filar and M. G. Wirick, “Bulk and solution
    properties of chitosan In: Proceed- ings of the 1st
    Int. Conf. on chitin/chitosan” Muzzarelli, R. A. A.
    and Pariser, E. R. (Eds): 169, 1978。
    40.S. I. Aiba, “Studies on chitosan: 4. Lysozymic
    hydrolysis of partially N-acetylated chitosans”,
    International Journal of Biological Macromolecules,
    Vol. 14, 225-228, 1992。
    41.呂卦南,「幾丁質與幾丁鉅堂之製備與鑑定」,康寧學報,
    Vol. 8,157-170,2006。
    42.X. Z. Shu and K. J. Zhu, “Controlled drug release
    properties of ionically cross-linked chitosan beads:
    the influence of anion structure”, International
    Journal of Pharmaceu- tics, Vol. 233, 217-255, 2002。
    43.Z. X. Tang, J. Q. Qian and L. E. Shi,
    “Characterizations of immobilized neutral proteinase on
    chitosan nano-particles”, Process Biochemistry, Vol.
    41, 1193-1197, 2006。
    44.H. R. Lin, K. S. Chen, S. C. Chen, C. H. Lee, S. H.
    Chiou, T. L. Chang and T. H. Wu, “Attachment of stem
    cells on porous chitosan scaffold crosslinked by
    Na5P3O10” , Material Science and Engineering C, Vol.
    27, pp 280-284, 2007。
    45.Q. Yang, F. Dou, B. Liang and Q. Shen, “Studies of
    cross-linking reaction on chitosan fiber with
    glyoxal”, Carbohydrate Polymers, Vol. 59, pp 205-210,
    2005。
    46.T. Becker, M. Schlaak, H. Strasdeit, “Adsorption of
    nickel(Ⅱ), zinc(Ⅱ) and cadmium (Ⅱ) by new chitosan
    derivatives”, Reactive & functional polymer, Vol.44,
    289-298, 2000。
    47.W. S. Wan Ngah, C. S. Endud, and R. Mayanar, “Removal
    of copper (Ⅱ) ions from aqueous onto chitosan and
    cross-linked chitosan beads”, Reactive & Functional
    Polymers, Vol. 50, pp 181-190, 2002。
    48.A. A. Atia, “Studies on the interaction of mecury(Ⅱ)
    and uranyl(Ⅱ) with modified chitosan resins”,
    Hydrometallurgy, Vol. 80, 13-22, 2005。
    49.N. Sankararamakrishnan and R. Sanghi, “Preparation and
    characterization of a novel xanthated chitosan”,
    Carbohydrate Polymers, Vol. 66, 160-167, 2006。
    50.林怡伶,化學修飾雙性幾丁聚醣衍生物及其持水特性研究,國立
    交通大學材料科學與工程研究所碩士論文, 25-26,2005。
    51.M. Hitoshi, R. Giuseppe, C. Tommasina, Y. Yoshiaki and
    U. Hiroshi, “Low-degree oxidized scleroglucan and its
    hydrogel”, International Journal of Biological
    Macromolecules, Vol. 28, 351-358, 2001。
    52.C. K. Kuo and P. X. Ma, “Ionically crosslinked
    alginate hydrogels as scaffolds for tissue engineering:
    Part 1. Structure, gelation rate and mechanical
    properties”, Biomaterials, Vol. 22, 511-521, 2001。
    53.J. S. Park, J. W. Park and E. Ruckenstein, “Thermal
    and dynamic mechanical analysis of PVA/MC blend
    hydrogels”, Polymer, Vol. 42, 4271-4280, 2001。
    54.W. E. Hennink, S. J. De Jong, G. W. Bos, T. F. J.
    Veldhuis and C. F. van Nostrum, “Biodegradable dextran
    hydrogels crosslinked by stereocomplex formation for
    the controlled release of pharmaceutical protein”,
    International Journal of Pharmaceutics, Vol. 277, 99-
    104, 2004。
    55.蕭奧,張有義,郭蘭生,膠體及界面化學入門,高立出版,15-
    30,1997。
    56.E. Guibal,.“Interactions of metal ions with chitosan-
    based sorbents: a review”, Separation and
    Puriification Technology, Vol. 38, 43-74, 2004。
    57.林敬智,「下水污泥灰渣應用於銅離子去除的初步探討」,中央
    大學環境工程研究所,9-12,2001。
    58.H.A. Elliott and C.P. Huang, “Factors affecting the
    adsorption of complexed heavy metals on hydrous
    Al2O3”, Water science and technology, Vol.17, 1017-
    1028, 1984。
    59.A.K. Bhattacharya and C. Venkobachar, “Removal of
    Cadmium(Ⅱ) by low cost adsorbents”, Journal of
    environmental engineering, Vol. 110, 110-112, 1984。
    60.C.P. Huang and E.A. Rhoads, “Adsorption of Zn(Ⅱ) onto
    hydrous aluminosilicates”, Journal of colloid and
    interface science, Vol. 131, 289-306, 1989。
    61.J. Ayala, F. Blanco, P. Garcia, P. Rodriguze and J.
    Sancho, ”Asturian fly ash as a heavy metal removal
    material”, Fuel, Vol.77, 1147-1154, 1998。
    62.V. K. Gupta and I. Ali, ”Utilization of bagasse fly
    ash (A sugar industry waste) for the removal of copper
    and zinc from wastewater”, Separation and purification
    technology, Vol. 18, 131-140, 2000。
    63.N. H. Turner, “X-ray photoelectron and auger electron
    spectroscopy”, Applied Spectroscopy Reviews, Vol. 35,
    203-254, 2000。
    64.儀器總覽9,環境及安全衛生檢測儀器, 行政院國家科學委員會
    精密儀器發展中心出版,pp 67-69,1999。
    65.邱承美,陶金華,「儀器分析原理」,科文出版社出版,1994。
    66.F. Garbassi, M. Morra, and E. Occhiello, “Polymer
    surfaces from physics to technology”, John Wiley &
    Sons Ltd, 1994。
    67.顏棋鑫,「幾丁聚醣顆粒吸附有害重金屬之探討」,朝陽科技大
    學應用化學系碩士論文,pp 13-14,2002。
    68.B.Y.M. Bueno, M.L. Torem, F. Molina, L.M.S. de
    Mesquita, “Biosorption of lead(Ⅱ), chromiun(Ⅱ) and
    copper(Ⅱ) by R. Opacus:Equilibrium and kinetic
    studies”, Minerajs engineering, Vol.110, 534-545,
    2007。
    69.I. Manjubala, S. Scheler, Jorg Bossert, Klaus D. Jandt,
    “Mineralisation of chitosan scaffolds with nano-apatite
    formation by double diffusion technique”, Acta bio -
    material, Vol.2, 75-84, 2006。
    70.謝玠揚,「聚麩胺酸及幾丁聚醣複合生醫基材之製程探討、性質
    改良及制放應用」,台灣大學化學工程學系博士論文,36-44,
    2004。
    71.Chunxiu Liu and Renbi Bai, “Preparation of
    chitosan/cellulose acetate blend hollow fibers for
    adsorptive performance”, Journal of Membrane Science,
    Vol. 267, 68-77, 2005.
    72.Jiunn-Der Liao, Shu-Ping Lin, and Yi-Te Wu, “Dual
    properties of the deacetylated sites in chitosan for
    molecular immobilization and biofunctional effects”,
    Biomacromolecules, Vol. 6, 392-399, 2005.
    73.M. S. Chiou and H. Y. Li, “Adsorption behavior of
    reactive dye in aqueous solution on chemical cross-
    linked chitosan beads”, Chemosphere, Vol. 50, 1095-
    1105, 2003。
    74.N. Li, R. Bai, “Copper adsorption on chitosan-
    cellulose hydrogel bead:behaviors and mechanisms”,
    Separation and purification technology, Vol.42, 237-
    247, 2005。
    75.Li Jin and Renbi Bai, “Mechanisms of lead adsorption
    on Chitosan/PVA hydrogel beads”, Langmuir, Vol. 18,
    9765-9770, 2002.
    76.M. Rhazi, J. Desbrieres, A. Tolaimate, M. Rinaudo, P.
    Vottero, A. Alagui , ”Contribution to the complexation
    of copper by chitosan and pligomers”, Polymer, Vol.
    43, 1267-1276, 2002.
    77.I. F. Amaral, P. L. Granja, and M. A. Barbosa,
    “Chemical modification of chitosan by phosphorylation:
    an XPS, FT-IR and SEM study”, Journal of Biomaterial
    Science Polymer Edition, Vol. 16, 1575-1593, 2005。
    78.J. Guzman, I. Saucedo, J. Revilla, R. Navarro, E.
    Guibal,” Copper sorption by chitosan in the presence
    of citrate ions: influence of metal speciation on
    sorption mechanism and uptake capacities”,
    International Journal of Biological Macromolecules,
    Vol. 33, 57-65, 200.

    下載圖示 校內:2010-07-16公開
    校外:2018-07-16公開
    QR CODE