| 研究生: |
王柏翔 Wang, Po-Hsiang |
|---|---|
| 論文名稱: |
探討影響高鐵旅客使用行動支付之因素 Exploring the Factors Affecting High Speed Rail Passengers' Usage Intention of Mobile Payment |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 行動支付 、延伸型科技整合接受模型 、延伸型隱私計算模型 、隱私價值 、Hybrid選擇模式 |
| 外文關鍵詞: | Mobile payment, Unified theory of acceptance and use of technology (UTAUT2), Extended privacy calculus theory, Privacy value, Hybrid discrete choice model |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來行動支付改變大眾的消費型態,多數應用於零售業。針對鐵路運輸業之相關文獻較少。有別於零售業,運輸業之交易紀錄具有旅客移動之資訊,對於使用者的個人隱私影響甚大。本研究將高鐵旅客視為主要研究對象,探討影響旅客使用行動支付之正向及反向因素。並將旅客的潛在心理變數及客觀屬性變數納入考量,以求更全面完善的分析。
潛在心理變數方面,本研究採用延伸型科技整合接受模型來探討行動支付對於旅客帶來的好處是否影響旅客之選擇行為。更進一步結合延伸型隱私計算模型,將個人資料外流之風險一同納入考量,以了解行動支付之益處及風險的權衡關係。
分析結果顯示,在潛在心理變數方面「便利條件」、「隱私顧慮」及「信任」影響旅客使用行動支付的意圖。而客觀方案屬性變數中,以「轉乘折扣」影響旅客最大。並透過Hybrid選擇模式發現行動支付是一項具有進入門檻的消費形式,更進一步了解旅客期望行動支付為其帶來更多的時間效用。亦驗證了行動支付具有減省時間之特性。透過隱私補償機制,推估不同旅次目的之旅客其隱私價值。發現商務及通勤旅次的旅客具有較高的隱私價值,並推估商務與學生族群具有不同的隱私價值。最後利用彈性與敏感度分析探討屬性變數對於旅客選擇行為之影響。本研究結果可作為台灣高鐵推動及優化行動支付服務之參考。
As all the transaction process on the smartphone, more and more people concern about the privacy issue. The purpose of this study is to know the factors affecting passengers’ usage intention of mobile payment. In order to comprehensively analyze the passengers’ choice behavior, we involve the hybrid discrete choice model which combines the latent variable model and discrete choice model. For the latent variables, we apply Unified Theory of Acceptance and Use of Technology (UTAUT2) and extended privacy calculus theory as the research model. On the other hand, in the discrete choice part we employ the binary logit model and mixed logit model for objective variables.
Compare to previous study, this study focuses on the transportation industry which transaction records including the personal location data and financial information. Besides, there is no study focus on estimate privacy value based on different trip purpose. The results point out the construct “facilitating condition” and “trust” are the vital factors for promoting mobile payment. Besides, we find the commuters and businessman have higher privacy value. Furthermore, we also find the businessman and students have different privacy value according 30,000 NTD as the threshold. The conclusion of this study has implications for encouraging passengers using mobile payment. Finally, we purpose the suggestions for personal data protection based on different trip purpose.
Acquisti, A., John, L. K., & Loewenstein, G. (2013). What is privacy worth. The Journal of Legal Studies, 42(2), 249-274.
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
Au, Y. A., & Kauffman, R. J. (2008). The economics of mobile payments: Understanding stakeholder issues for an emerging financial technology application. Electronic Commerce Research and Applications, 7(2), 141-164.
Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 20(4), 644-656.
Bansal, G., & Gefen, D. (2010). The impact of personal dispositions on information sensitivity, privacy concern and trust in disclosing health information online. Decision support systems, 49(2), 138-150.
Beldad, A., De Jong, M., & Steehouder, M. (2010). How shall I trust the faceless and the intangible? A literature review on the antecedents of online trust. Computers in human behavior, 26(5), 857-869.
Ben-Akiva, E., M., Lerman, S. R., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand. MIT press, 9.
Ben-Akiva, M., M., D., Gärling, T., Gopinath, D., Walker, J., Bolduc, D., ... , & Polydoropoulou, A. (1999). Extended framework for modeling choice behavior. Marketing Letters, 10(3), 187-203.
Ben-Akiva, McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., ..., & Daly, A. (2002). Hybrid choice models: progress and challenges. Marketing Letters, 13(3), 163-175.
Chae, M., Kim, J., Kim, H., & Ryu, H. (2002). Information quality for mobile internet services: A theoretical model with empirical validation. Electronic markets, 12(1), 38-46.
Chang, M. L., & Wu, W. Y. (2012). Revisiting perceived risk in the context of online shopping: An alternative perspective of decision‐making styles. Psychology & Marketing, 29(5), 378-400.
Chen, S. C., Shing-Han, L., & Chien-Yi, L. (2011). Recent related research in technology acceptance model: A literature review. Australian Journal of Business and Management Research, 1(9), 124.
Compeau, D. R., & Higgins, C. A. (1995). Application of social cognitive theory to training for computer skills. Information systems research, 6(2), 118-143.
Culnan, M. J., & Armstrong, P. K. (1999). Information Privacy Concerns, Procedural Fairness, and Impersonal Trust: An Empirical Investigation. Organization Science, 10(1), 104-115.
Culnan, M. J., & Bies, R. J. (2003). Consumer privacy: Balancing economic and justice consideration. Journal of Social Issues, 59(2), 323-342.
Dahlberg, T., Guo, J., & Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265-284.
Dahlberg, T., Mallat, N., & Öörni, A. (2003). Trust enhanced technology acceptance modelconsumer acceptance of mobile payment solutions: Tentative evidence. Stockholm Mobility Roundtable, 22(23).
Dahlberg, T., Mallat, N., Ondrus, J., & Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181.
Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral Dissertation, Sloan School of Management, Massachusetts Institute of Technology.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace 1. Journal of applied social psychology, 22(14), 1111-1132.
Derikx, S., de Reuver, M., Kroesen, M., & Bowman, H. (2015). Buying-off privacy concerns for mobility services in the Internet-of-things era: A discrete choice experiment on the case of mobile insurance. In Bled eConference, 28.
Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transaction Information System Research, 17, 61-80.
Eastlick, M. A., Lotz, S. L., & Warrington, P. (2006). Understanding online B-to-C relationships: An integrated model of privacy concerns, trust, and commitment. Journal of Business Research, 59(8), 877-886.
Egelman, S., Felt, A. P., & Wagner, D. (2013). Choice architecture and smartphone privacy: There’sa price for that. The economics of information security and privacy, 211-236.
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
Fowkes, T., & Wardman, M. (1988). The design of stated preference travel choice experiments: with special reference to interpersonal taste variations. Journal of Transport Economics and Policy, 27-44.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarterly, 27(1), 51-90.
Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571.
Hann, I. H., Hui, K. L., Lee, S. Y. T., & Png, I. P. (2007). Overcoming online information privacy concerns: An information-processing theory approach. Journal of Management Information Systems, 24(2), 13-42.
Jarvenpaa, S. L., Tractinsky, N., & Saarinen, L. (1999). Consumer trust in an Internet store: A cross-cultural validation. Journal of Computer-Mediated Communication, 5(2), JCMC526.
Johnson, V. L., Kiser, A., Washington, R., & Torres, R. (2018). Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Computers in Human Behavior, 79, 111-122.
Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460-474.
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
Kim, J., Rasouli, S., & Timmermans, H. (2014). Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars. Transportation research part A: policy and practice, 69, 71-85.
Kowatsch, T., & Maass, W. (2012). IoT-I Deliverable - D2.4: Social Acceptance and Impact Evaluation. IoT-I consortium.
Krasnova, H., Hildebrand, T., & Guenther, O. (2009). nvestigating the value of privacy on online social networks: conjoint analysis. Proceedings of the 30th International Conference on Information Systems (ICIS), Phoenix: USA, 173.
Kroes, E. P., & Sheldon, R. J. (1988). Stated preference methods: an introduction. Journal of Transport Economics and Policy, 22, 11-25.
Laudon, K. C. (1996). Markets and privacy. Communications of the ACM, 39(9), 92-104.
Laufer, R. S., & Wolfe, M. (1977). Privacy as a concept and a social issue: amultidimensional developmental theory. Journal of Social Issues, 33(3), 22-42.
Laukkanen, T., & Lauronen, J. (2005). Consumer value creation in mobile banking services. International journal of mobile Communications, 3(4), 325-338.
Lin, H. C., Tang, K. W., & Lai, H. C. (2010). Analyzing user intention and effect with TAM on producing digital materials by joinnet. International Journal on Digital Learning Technology, 2(1), 60-78.
Lohse, G. L., Bellman, S., & Johnson, E. J. (2000). Consumer buying behavior on the Internet: Findings from panel data. Journal of interactive Marketing, 14(1), 15-29.
Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision support systems, 49(2), 222-234.
Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision support systems, 49(2), 222-234.
Madigan, R., Louw, T., Wilbrink, M., Schieben, A., & Merat, N. (2017). What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems. Transportation research part F: traffic psychology and behaviour, 50, 55-64.
Mai, B., Menon, N. M., & Sarkar, S. (2010). No free lunch: Price premium for privacy seal-bearing vendors. Journal of Management Information Systems, 27(2), 189-212.
Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information systems research, 15(4), 336-355.
Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet Users' Information Privacy Concerns (IUIPC): The Construct, the Scale, and a Causal Model. Information System Research, 15(4), 336-355.
Mallat, N., Rossi, M., Tuunainen, V. K., & Öörni, A. (2008). An empirical investigation of mobile ticketing service adoption in public transportation. Personal and Ubiquitous Computing, 12(1), 57-65.
Miao, M., & Jayakar, K. (2016). Mobile payments in Japan, South Korea and China: Cross-border convergence or divergence of business models? Telecommunication Policy, 40, 182-196.
Miltgen, C. L., & Smith, H. J. (2015). Exploring information privacy regulation, risks, trust, and behavior. Information & Management, 52(6), 741-759.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in human behavior, 61, 404-414.
Pearmain, D., & Kroes, E. P. (1990). Stated preference techniques: a guide to practice.
Pelletier, M. P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557-568.
Png, I. (2007). On the Value of Privacy from Telemarketing: Evidence from the'Do Not Call'Registry.
Rose, E. (2005). Data users versus data subjects: are consumers willing to pay for property rights to personal information? In System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on IEEE., 180c.
Schreiner, M., & Hess, T. (2013). On The Willingness To Pay For Privacy As A Freemium Model: First Empirical Evidence. In ECIS, 30.
Schreiner, M., & Hess, T. (2015). Why Are Consumers Willing to Pay for Privacy? An Application of the Privacy-freemium Model to Media Companies. In ECIS.
Sekhon, H., Ennew, C., Kharouf, H., & Devlin, J. (2014). Trustworthiness and trust: Influences and implications. Journal of Marketing Management, 30(3-4), 409-430.
Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2015). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223.
Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & Marketing, 32(8), 860-873.
Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: measuring individuals' concerns about organizational practices. MIS quarterly, 167-196.
Srivastava, S. C., Chandra, S., & Theng, Y. L. (2010). Evaluating the role of trust in consumer adoption of mobile payment systems: An empirical analysis. Communications of the Association for Information Systems, 27, 561-588.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
Ten Hoeve, Y., Castelein, S., Jansen, W., Jansen, G., & Roodbol, P. (2016). Predicting factors of positive orientation and attitudes towards nursing: A quantitative cross-sectional study. Nurse education today, 40, 111-117.
Thakur, R. (2013). Customer adoption of mobile payment services by professionals across two cities in India: An empirical study using modified technology acceptance model. Business Perspectives and Research, 1(2), 17-30.
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: toward a conceptual model of utilization. MIS quarterly, 125-143.
Tsai, J. Y., Egelman, S., Cranor, L., & Acquisti, A. (2011). The effect of online privacy information on purchasing behavior: An experimental study. Information Systems Research, 22(2), 254-268.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
Vlachos, I., & Lin, Z. (2014). Drivers of airline loyalty: Evidence from the business travelers in China. Transportation Research Part E: Logistics and Transportation Review, 71, 1-17.
Vroom, V. H. (1964). Work and motivation. NY: John Wiley &sons, 45.
Wang, L., & Yi, Y. (2012). The impact of use context on mobile payment acceptance: An empirical study in China. In Advances in computer science and education, 293-299 Springer, Berlin, Heidelberg.
Wang, T., Doung, T. D., & Chen, C. C. (2016). Intention to disclose personal information via mobile applications: A privacy calculus perspective. International Journal of Information Management, 36, 531-542.
Xu, H. (2007). The effects of self-construal and perceived control on privacy concerns. ICIS 2007 proceedings, 125.
Xu, H., Luo, X. R., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision support systems, 51(1), 42-52.
Xu, H., Teo, H. H., & Tan, B. C. A., R. (2009). The role of push-pull technology in privacy calculus: the case of location-based services. Journal of Management Information Systems, 26(3), 135-174.
Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142.
Zhang, L., Zhu, J., & Liu, Q. (2012). A meta-analysis of mobile commerce adoption and the moderating effect of culture. Computers in human behavior, 28(5), 1902-1911.
Zhou, T., Lu, Y., & Wang, B. (2012). Examining location-based services usage from the perspectives of unified theory of acceptance and use of technology and privacy risk. Journal of electronic commerce research, 13(2), 135.
邱顯明. (2011). 高鐵轉乘台鐵意願之關鍵因素探討. 都市交通.
陳運玲. (2010). 公車服務IPA分析與運量提升策略之研究-以台南市市公車為例. 國立成功大學交通管理科學系學位論文, 37-40.
賴柏蓉. (2015). 台灣高鐵推出低價商品後之旅客運具選擇行為. 國立成功大學交通管理科學系學位論文, 17.
校內:2024-09-01公開