| 研究生: |
王姿婷 Wang, Tzu-Ting |
|---|---|
| 論文名稱: |
利用有限元素法及可變時間步伐探討相變化之熱傳問題 Analysis of Phase Change Problems by Finite Element Method and Adaptive Time Step Scheme |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 有限元素法 、可變時間步伐 、相變化 、等效比熱法 、等效比熱/熱焓法 |
| 外文關鍵詞: | finite element method, adaptive time step, phase change, effective specific heat method, enthalpy/specific heat method |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
潛熱釋放在凝固過程中的相變化是極為重要的物理現象,本文以有限元素法搭配等效比熱法、等效比熱/熱焓法、可變時間步伐之等效比熱法及可變時間步伐之等效比熱/熱焓法來處理潛熱效應,比較上述四種方法之所需計算時間、潛熱釋放多寡及溫度分佈準確度,並探討一維史帝芬問題、一維紐曼問題及二維瑞特延問題。其中利用溫度分佈之數值解與正解的總誤差(total-error)來比較各數值方法及節點的準確度。為使溫度分佈更精準,本研究藉由變換所採用之數值方法及調整參數來達到此目的,例如:縮小時間步伐、針對單位元素增加節點數、以不同形狀之元素組成求解區域及增加求解區域之節點數等等。
研究結果發現史帝芬問題加上可變時間步伐的等效比熱法溫度分佈及潛熱釋放的計算皆較準確,且電腦運算時間皆有減少,而等效比熱/熱焓法本身就很精準,因此加上可變時間步伐無法再提升溫度計算準確度,但可有效地減少運算時間;紐曼問題加上可變時間步伐亦不能增加準確度,但可提升計算效率;瑞特延問題使用三種元素節點所得液固界面皆很接近數值解,其中以四邊形元素平均誤差較小。
The phase change involving latent heat effect in a solidification process is an important physical phenomenon because it would affect the accuracy of the temperature distribution. In the thesis, FORTRAN programs of finite element method and adaptive time stepping scheme are written to simulate the heat transfer problems with phase change including one-dimensional Stefan and Neumann problems and two-dimensional Rathjen problem. The effective specific heat and the enthalpy/specific heat methods are applied to the calculation of the latent heat released during the phase change, which is related to the adaptive or uniform time step scheme and the node number and the geometry of the element, such as four-node quadrilateral and nine-node quadrilateral elements and three-node triangular element. Gaussian method is employed to solve the integral in the element equations. To compare the numerical methods, the accuracy of temperature, the release of latent heat, and the CPU time are utilized as the comparison base. From the analysis results, the quadrilateral element has the better accuracy of temperature than the triangular one. The adaptive time step of effect specific heat method could obtain greater accuracy of temperature and calculation efficiency than the uniform time step scheme. However, since the high accuracy is inherent in enthalpy/specific heat method, the adaptive time step is not more accurate than the uniform one. The calculated results of Neumann problem is similar to those of Stefan problem with the effective specific heat method. Whereas, the adaptive time step effective specific heat method could only reduce the calculation time but not improve the accuracy of temperature. For Rathjen problem, using triangular element brings out higher average error than applying quadrilateral element.
[1] R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations."
[2] J. Turner, L. J. Topp, H. C. Martin, and R. W. Clough, Stiffness and Deflection Analysis of Complex Structures, 1956.
[3] J. Greenstadt, "On the reduction of continuous problems to discrete form," IBM Journal of Research and Development, vol. 3, pp. 355-363, 1959.
[4] R. W. Clough, The Finite Element Method in Plane Stress Analysis: American Society of Civil Engineers, 1960.
[5] Y. Cheung, "Finite Elements in the Solution of," Engineer, 1965.
[6] L. Goodrich, "Efficient numerical technique for one-dimensional thermal problems with phase change," International Journal of Heat and Mass Transfer, vol. 21, pp. 615-621, 1978.
[7] P. Solin, L. Dubcova, and J. Kruis, "Adaptive hp-FEM with dynamical meshes for transient heat and moisture transfer problems," Journal of computational and applied mathematics, vol. 233, pp. 3103-3112, 2010.
[8] V. John and J. Rang, "Adaptive time step control for the incompressible Navier–Stokes equations," Computer Methods in Applied Mechanics and Engineering, vol. 199, pp. 514-524, 2010.
[9] 彭勳章, "從澆注到凝固之鑄造過程的可變時間步伐數值分析," 2010.
[10] T. Coupez, G. Jannoun, N. Nassif, H. C. Nguyen, H. Digonnet, and E. Hachem, "Adaptive time-step with anisotropic meshing for incompressible flows," Journal of Computational Physics, vol. 241, pp. 195-211, 2013.
[11] J. A. Lee, J. Nam, and M. Pasquali, "A New Stabilization of Adaptive Step Trapezoid Rule Based on Finite Difference Interrupts," SIAM Journal on Scientific Computing, vol. 37, pp. A725-A746, 2015.
[12] J. Hsiao, "An efficient algorithm for finite-difference analyses of heat transfer with melting and solidification," Numerical Heat Transfer, vol. 8, pp. 653-666, 1985.
[13] A. Date, "A strong enthalpy formulation for the Stefan problem," International journal of heat and mass transfer, vol. 34, pp. 2231-2235, 1991.
[14] C. Swaminathan and V. Voller, "General source-based method for solidification phase change," Numerical Heat Transfer, pp. 175-189, 1992.
[15] T. Tszeng, Y. Im, and S. Kobayashi, "Thermal analysis of solidification by the temperature recovery method," International Journal of Machine Tools and Manufacture, vol. 29, pp. 107-120, 1989.
[16] J. Stefan, "Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere," Annalen der Physik, vol. 278, pp. 269-286, 1891.
[17] Y. C. Liu and L. S. Chao, "Modified effective specific heat method of solidification problems," Materials Transactions, vol. 47, pp. 2737-2744, Nov 2006.
[18] K. A. Rathjen and L. M. Jiji, "Heat Conduction with Melting or Freezing in a Corner," Journal of Heat Transfer, vol. 93, pp. 101-&, 1971.
[19] 張宇良, "利用有限元素法求解相變化熱傳問題," 成功大學工程科學系學位論文, pp. 1-107, 2012.
[20] 曾相文, "以有限元素法分析凝固熱傳問題," 成功大學工程科學系學位論文, pp. 1-105, 2013.
[21] 羅浩哲, "凝固熱傳問題之使用高斯積分法的有限元素分析," 成功大學工程科學系學位論文, pp. 1-109, 2014.
[22] 丁智慧, "以有限元素法及可變時間步伐分析凝固熱傳問題," 成功大學工程科學系學位論文, pp. 1-101, 2015.
[23] R. D. Cook, Concepts and applications of finite element analysis: John Wiley & Sons, 2007.
[24] K. H. Huebner, A. Thornton, and T. G. Byrom, The Finite Element Method for Engineers: Wiley, 1994.
[25] A. Baker, "Finite element computational fluid mechanics," NASA STI/Recon Technical Report A, vol. 83, p. 41874, 1983.
[26] O. C. Zienkiewicz, R. L. Taylor, O. C. Zienkiewicz, and R. L. Taylor, The finite element method vol. 3: McGraw-hill London, 1977.
[27] C. A. Felippa and R. W. Clough, The finite element method in solid mechanics: American Mathematical Society, 1970.
[28] P. Davis and P. Rabinowitz, "Abscissas and weights for Gaussian quadratures of high order," J. Res. Nat. Bur. Standards, vol. 56, pp. 35-37, 1956.
[29] H. RATHOD, K. NAGARAJA, B. VENKATESUDU, and N. RAMESH, "Gauss Legendre quadrature over a triangle," J. Indian Inst. Sci, vol. 84, pp. 183-188, 2004.
[30] P. Dunne, "Complete polynomial displacement fields for finite element method(Polynomial displacement fields in membrane and bending plate elements, discussing existence conditions)," Aeronautical Journal, vol. 72, p. 245, 1968.
[31] F. Hussain, M. Karim, and R. Ahamad, "Appropriate Gaussian quadrature formulae for triangles," International Journal of Applied Mathematics and Computation, vol. 4, pp. 023-038, 2012.
[32] C. Reddy, "Improved three point integration schemes for triangular finite elements," International Journal for Numerical Methods in Engineering, vol. 12, pp. 1890-1896, 1978.