簡易檢索 / 詳目顯示

研究生: 滕長溱
Teng, Charng-Jen
論文名稱: 鋼筋混凝土梁以複合材料棒及複合材料板補強之數值分析
Numerical Analysis of Reinforced Concrete Bridge Girders by Fiber Reinforced Plastic Rods and Plates
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 韓愛麗
Han, Ay-Lie
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 119
中文關鍵詞: 複合材料AbaqusNSMFRP
外文關鍵詞: Abaqus, finite element, FRP, NSM, cohesive
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 纖維加勁複合材料(FRP)是將玻璃纖維、碳纖維或硼纖維加於高分子環氧樹脂中所形成的一種複合材料,由於其具有高強度、重量輕以及耐蝕性佳等優點,現今利用FRP材料於土木結構物補強的概念至關重要,本研究取用FRP棒以及FRP板對梁進行加勁,並藉由數值分析來了解其中的貢獻和效益,而近表面安裝(NSM)於混凝土中的FRP棒深度與混凝土間的黏結關係也是我們所關心的重要課題。因此本研究使用有限軟體Abaqus來建構3D有限模型,其中包含了模擬雙重剪切搭接試驗(Double shear lap test)以及三點T型梁彎曲試驗,藉由與實際的實驗結果相比對,來匹配出近表面安裝(NSM)FRP棒與混凝土之間在模擬中的界面行為關係以及更深入了解FRP板與FRP棒對於T型梁彎曲試驗的貢獻和效益。

    Though there has been widespread use of FRP strengthening systems, it is important to carry out further experimental, analytical and quantitative assessment so as to comprehend the impact of various strengthening factors on the effectiveness of RC members. Abaqus, which is sophisticated numerical modeling software, is employed in this paper to formulate a 3D non-linear finite element (FE) model that is capable of accurately simulating double shear lap tests that can appropriately illustrate the nature of bond between FRP rods and concrete. For this purpose, the implementation specifically stresses on the modeling of the interface behavior among the near surface mounted (NSM) FRP rods/bars and concrete by making appropriate adjustments for the parameters of the bond stress/slip law used. In addition, an extensive 3D non-linear FE model is formulated that is capable of accurately forecasting the load-carrying ability and reaction of RC bridge girders reinforced with NSM FRP rods and plates exposed to three-point bending loading. To validate the FE models formulated, the forecasted behavior and response are contrasted with the computed experimental data.

    ABSTRACT I 摘要 II TABLE OF CONTENTS III LIST OF FIGURES VI LIST OF TABLES IX CHAPTER 1 INTRODUCTION 1 1.1. Overview 1 1.2. Motivation 3 1.3. Objectives 4 1.4. Thesis Structure 4 1.5. Research Procedure 5 CHAPTER 2 RESEARCH METHOD 6 2.1. General 6 2.2. Literature Review 7 2.2.1. Double Shear Lap Test of FRP-Concrete Interfacial Bond Behavior 7 2.2.2. Performances of FRP-Strengthened Structure 10 2.2. Element Type 13 2.3. Brief Introduction of Composite Materials 15 2.4. FRP Rod Behavior 16 2.5. FRP Plate Behavior 17 2.5.1. Linear Stress-Strain Relations of an Orthotropic Lamina 17 2.5.2. Nonlinear Constitutive Model of an Orthotropic Lamina 19 2.5.3. Nonlinear Stress-Strain Relations for a lamina on Arbitrary Orientation 20 2.5.4. Tsai-Wu Failure Theory 22 2.5.5. Failure Mode 24 2.6. Steel Behavior 25 2.7. Concrete Behavior 26 2.7.1. Concrete Damaged Plasticity Model 26 2.7.2. Tension Stiffening 27 2.7.3. Compressive Crushing 29 2.8. Adhesive Behavior 30 2.9. Coefficient of Determination 30 CHAPTER 3 FINITE ELEMENT MODELING OF DOUBLE SHEAR LAP TEST 31 3.1. Summary of Experimental Program 31 3.1.1. Test Set Up 31 3.1.2. FRP Rod Configuration 33 3.1.3. Placement of FRP Rods 34 3.2. Model Introduction 35 3.2.1. Geometric Models 36 3.2.2. Element Specifications 37 3.3. Material Properties 38 3.3.1. Concrete 38 3.3.2. Steel 39 3.3.3. FRP Rod 40 3.4. Constraints 41 3.4.1. Load and Boundary Conditions 41 3.4.2. Contact Interaction 41 3.5. Nonlinear Finite Element Analysis Procedure 43 3.6. Numerical Validation 44 3.6.1. Parameter Study 44 3.6.2. Relation between Embedment Depth of FRP rod and Cohesive Stiffness 48 CHAPTER 4 FINITE ELEMENT MODELING OF THREE-POINT BENDING TEST 53 4.1. Summary of Experimental Program 53 4.2. Model Introduction and Geometry 55 4.3. Element Specification 57 4.4. Material Properties 58 4.4.1. Concrete 58 4.4.2. Steel 60 4.4.3. FRP Rod and FRP Plate 61 4.5. Constraints 64 4.5.1. Load and Boundary Conditions 64 4.5.2. Contact Interactions 66 4.6. Numerical Validation 67 4.7. Extension 70 4.7.1. Effect of FRP Plate Width 71 4.7.2. Contributions of FRP Rod and FRP Plate 72 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 75 5.1. Conclusions 75 5.2. Recommendations for Further Research 77 REFERENCES 78 APPENDIX 85 A1. Analytical Calculations for 3-point Bending Test-BRF Beam 85 A2. Analytical Calculations for 3-point Bending Test-BRF Beam 87 A3. Abaqus Input File for Double Shear Lap Test Model 89 A4. Abaqus Input File for Model Control 3-Point Bending Model 99 A5. Abaqus Input File for Strengthened 3-Point Bending Model 106 A6. FORTRAN Subroutine 116

    [1] S. El-Tawil, C. Ogunc, A. Okeil, and M. Shahawy, “Static and fatigue analyses of RC beams strengthened with CFRP laminates,” J. Compos. Constr., Vol. 5, no. 4, pp. 258–267, Nov.2001.
    [2] D. A. Bournas, A. Pavese, and W. Tizani, “Tensile capacity of FRP anchors in connecting FRP and TRM sheets to concrete,” Eng. Struct., Vol. 82, pp. 72–81, Jan.2015.
    [3] Riadh Al-Mahaidi and Robin Kalfat, Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer, 1st ed. 2018.
    [4] A. Siddika, K. Saha, M. S. Mahmud, S. C. Roy, M. A. AlMamun, and R. Alyousef, “Performance and failure analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete (RC) beams,” SN Appl. Sci., Vol. 1, no. 12, pp. 1–11, Dec.2019.
    [5] U. Berardi and N. Dembsey, “Thermal and Fire Characteristics of FRP Composites for Architectural Applications,” Polymers (Basel)., Vol. 7, no. 11, pp. 2276–2289, Nov.2015.
    [6] Y. Ou and D. Zhu, “Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures,” Constr. Build. Mater., Vol. 96, pp. 648–656, Aug.2015.
    [7] A. Belarbi and B. Acun, “FRP systems in shear strengthening of reinforced concrete structures,” in Procedia Engineering, Jan. 2013, Vol. 57, pp. 2–8.
    [8] W. Ferdous, T. D. Ngo, K. T. Q. Nguyen, A. Ghazlan, P. Mendis, and A. Manalo, “Effect of fire-retardant ceram powder on the properties of phenolic-based GFRP composites,” Compos. Part B Eng., Vol. 155, pp. 414–424, Dec.2018.
    [9] A. Siddika, M. A. AlMamun, W. Ferdous, and R. Alyousef, “Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs – A state-of-the-art review,” Eng. Fail. Anal., Vol. 111, p. 104480, Apr.2020.
    [10] T. Rousakis, “Fiber Reinforced Polymer Confinement of Bridge Columns Suffering from Premature Bars ’ Buckling – Strength empirical model Recommendations of anti-buckling design through FRP confinement,” no. 2007, pp. 1–8, 2010.
    [11] F. M. Mukhtar and R. M. Faysal, “A review of test methods for studying the FRP-concrete interfacial bond behavior,” Construction and Building Materials, Vol. 169. Elsevier Ltd, pp. 877–887, Apr.30, 2018.
    [12] S. Y. Cao, J. F. Chen, J. W. Pan, and N. Sun, “ESPI measurement of bond-slip relationships of FRP-concrete interface,” J. Compos. Constr., Vol. 11, no. 2, pp. 149–160, Apr.2007.
    [13] X. H. Zheng, P. Y. Huang, G. M. Chen, and X. M. Tan, “Fatigue behavior of FRP-concrete bond under hygrothermal environment,” Constr. Build. Mater., Vol. 95, pp. 898–909, Aug.2015.
    [14] S. M. Raoof and D. A. Bournas, “Bond between TRM versus FRP composites and concrete at high temperatures,” Compos. Part B Eng., Vol. 127, pp. 150–165, Oct.2017.
    [15] C. Pellegrino, D. Tinazzi, and C. Modena, “Experimental Study on Bond Behavior between Concrete and FRP Reinforcement,” J. Compos. Constr., Vol. 12, no. 2, pp. 180–189, Apr.2008.
    [16] A. Serbescu, M. Guadagnini, and K. Pilakoutas, “Standardised double-shear test for determining bond of FRP to concrete and corresponding model development,” Compos. Part B Eng., Vol. 55, pp. 277–297, Dec.2013.
    [17] L. De Lorenzis, B. Miller, and A. Nanni, “Bond of fiber-reinforced polymer laminates to concrete,” ACI Mater. J., Vol. 98, no. 3, pp. 256–264, May2001.
    [18] E. -C. IRRT, “– En-core European network for composite reinforcement – RRT methodology 2008.” .
    [19] Y. Yun, Y. F. Wu, and W. C. Tang, “Performance of FRP bonding systems under fatigue loading,” Eng. Struct., Vol. 30, no. 11, pp. 3129–3140, Nov.2008.
    [20] O. Rafael and M. Carrillo, “Thesis evaluating the bond durability of frp-concreteb systems subjected to environmental exposures,” 2012.
    [21] B. Shadravan and F. M. Tehrani, “A review of direct shear testing configurations for bond between fiber-reinforced polymer sheets on concrete and masonry substrates,” Periodica Polytechnica Civil Engineering, Vol. 61, no. 4. Budapest University of Technology and Economics, pp. 740–751, Oct.24, 2017.
    [22] J. F. Chen, Z. J. Yang, and G. D. Holt, “FRP or steel plate-to-concrete bonded joints: Effect of test methods on experimental bond strength,” Steel Compos. Struct., Vol. 1, no. 2, pp. 231–244, Jun.2001.
    [23] D. Mostofinejad and A. Tabatabaei Kashani, “Experimental study on effect of EBR and EBROG methods on debonding of FRP sheets used for shear strengthening of RC beams,” Compos. Part B Eng., Vol. 45, no. 1, pp. 1704–1713, Feb.2013.
    [24] B. G. Charalambidi, T. C. Rousakis, and A. I. Karabinis, “Fatigue Behavior of Large-Scale Reinforced Concrete Beams Strengthened in Flexure with Fiber-Reinforced Polymer Laminates,” J. Compos. Constr., Vol. 20, no. 5, p. 04016035, Oct.2016.
    [25] L. Koutas and T. C. Triantafillou, “Use of anchors in shear strengthening of reinforced concrete T-beams with FRP,” J. Compos. Constr., Vol. 17, no. 1, pp. 101–107, Feb.2013.
    [26] A. J. Lamanna, L. C. Bank, and D. W. Scott, “Flexural strengthening of reinforced concrete beams by mechanically attaching fiber-reinforced polymer strips,” J. Compos. Constr., Vol. 8, no. 3, pp. 203–210, May2004.
    [27] M. Ekenel, A. Rizzo, J. J. Myers, and A. Nanni, “Flexural fatigue behavior of reinforced concrete beams strengthened with FRP fabric and precured laminate systems,” J. Compos. Constr., Vol. 10, no. 5, pp. 433–442, Oct.2006.
    [28] F. A. Fathelbab, M. S. Ramadan, and A. Al-Tantawy, “Strengthening of RC bridge slabs using CFRP sheets,” Alexandria Eng. J., Vol. 53, no. 4, pp. 843–854, Dec.2014.
    [29] E. Seyhan, C. Goksu, A. Uzunhasanoglu, and A. Ilki, “Seismic Behavior of Substandard RC Columns Retrofitted with Embedded Aramid Fiber Reinforced Polymer (AFRP) Reinforcement,” Polymers (Basel)., Vol. 7, no. 12, pp. 2535–2557, Dec.2015.
    [30] L. de Waal, D. Fernando, V. T. Nguyen, R. Cork, and J. Foote, “FRP strengthening of 60 year old pre-stressed concrete bridge deck units,” Eng. Struct., Vol. 143, pp. 346–357, Jul.2017.
    [31] J. G. Teng, J. F. Chen, S. T. Smith, and L. Lam, “Behaviour and strength of FRP-strengthened RC structures: A state-of-the-art review,” Proc. Inst. Civ. Eng. Struct. Build., Vol. 156, no. 1, pp. 51–62, Feb.2003.
    [32] T. M. Pham and H. Hao, “Review of Concrete Structures Strengthened with FRP Against Impact Loading,” Structures, Vol. 7. Elsevier Ltd, pp. 59–70, Aug.01, 2016.
    [33] W. Chen, T. M. Pham, H. Sichembe, L. Chen, and H. Hao, “Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet,” Compos. Part B Eng., Vol. 134, pp. 114–126, Feb.2018.
    [34] M. J. Shannag, N. M. Al-Akhras, and S. F. Mahdawi, “Flexure strengthening of lightweight reinforced concrete beams using carbon fibre-reinforced polymers,” Struct. Infrastruct. Eng., Vol. 10, no. 5, pp. 604–613, May2014.
    [35] M. Chellapandian and S. Suriya Prakash, “Behavior of frp-strengthened reinforced concrete columns under pure compression—experimental and numerical studies,” in Lecture Notes in Civil Engineering, Vol. 12, Springer, 2019, pp. 663–673.
    [36] S. S. Zhang, T. Yu, and G. M. Chen, “Reinforced concrete beams strengthened in flexure with near-surface mounted (NSM) CFRP strips: Current status and research needs,” Composites Part B: Engineering, Vol. 131. Elsevier Ltd, pp. 30–42, Dec.15, 2017.
    [37] S. Babaeidarabad, G. Loreto, and A. Nanni, “Flexural Strengthening of RC Beams with an Externally Bonded Fabric-Reinforced Cementitious Matrix,” J. Compos. Constr., Vol. 18, no. 5, p. 04014009, Oct.2014.
    [38] T. El Maaddawy and K. Soudki, “Carbon-fiber-reinforced polymer repair to extend service life of corroded reinforced concrete beams,” J. Compos. Constr., Vol. 9, no. 2, pp. 187–194, Mar.2005.
    [39] N. Attari, S. Amziane, and M. Chemrouk, “Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets,” Constr. Build. Mater., Vol. 37, pp. 746–757, Dec.2012.
    [40] M. Zarringol and M. Zarringol, “A Comparative Study on the Efficiency of CFRP and GFRP in the Improvement of Compressive Strength, Acoustic Impedance and Bracing of Filled and Hollow Concrete Columns in Different Layers and Ages,” J. Sustain. Dev., Vol. 9, no. 5, p. 110, Sep.2016.
    [41] Y. H. Mugahed Amran, R. Alyousef, R. S. M. Rashid, H. Alabduljabbar, and C. C. Hung, “Properties and applications of FRP in strengthening RC structures: A review,” Structures, Vol. 16. Elsevier Ltd, pp. 208–238, Nov.01, 2018.
    [42] H. M. Elsanadedy, T. H. Almusallam, S. H. Alsayed, and Y. A. Al-Salloum, “Experimental and FE study on RC one-way slabs upgraded with FRP composites,” KSCE J. Civ. Eng., Vol. 19, no. 4, pp. 1024–1040, Apr.2015.
    [43] R. H. Haddad and O. A. Almomani, “Flexural Performance and Failure Modes of NSM CFRP-Strengthened Concrete Beams: A Parametric Study,” Int. J. Civ. Eng., Vol. 17, no. 7, pp. 935–948, Jul.2019.
    [44] R. Jakubovskis, G. Kaklauskas, V. Gribniak, A. Weber, and M. Juknys, “Serviceability Analysis of Concrete Beams with Different Arrangements of GFRP Bars in the Tensile Zone,” J. Compos. Constr., Vol. 18, no. 5, p. 04014005, Oct.2014.
    [45] L. -Z. Yao and G. Wu, “Fiber-Element Modeling for Seismic Performance of Square RC Bridge Columns Retrofitted with NSM BFRP Bars and/or BFRP Sheet Confinement,” J. Compos. Constr., Vol. 20, no. 4, p. 04016001, Aug.2016.
    [46] C. Carloni and K. V. Subramaniam, “Author’s personal copy Investigation of sub-critical fatigue crack growth in FRP/concrete cohesive interface using digital image analysis,” 2013.
    [47] A. A. Baker, “Fibre composite repair of cracked metallic aircraft components - practical and basic aspects,” Composites, Vol. 18, no. 4, pp. 293–308, Sep.1987.
    [48] C. L. Ong, R. C. Chu, T. C. Ko, and S. B. Shen, “Composite patch reinforcement of cracked aircraft upper longeron: analysis and specimen simulation,” Theor. Appl. Fract. Mech., Vol. 14, no. 1, pp. 13–26, Sep.1990.
    [49] S. Naboulsi and S. Mall, “Modeling of a cracked metallic structure with bonded composite patch using the three layer technique,” Compos. Struct., Vol. 35, no. 3, pp. 295–308, Jul.1996.
    [50] J. J. Schubbe and S. Mall, “Investigation of a cracked thick aluminum panel repaired with a bonded composite patch,” Eng. Fract. Mech., Vol. 63, no. 3, pp. 305–323, Jun.1999.
    [51] L. S. Lee and R. Jain, “The role of FRP composites in a sustainable world,” Clean Technologies and Environmental Policy, Vol. 11, no. 3. Springer, pp. 247–249, Aug.12, 2009.
    [52] R. Narayanaswami and H. M. Adelman, “Evaluation of the Tensor Polynomial and Hoffman Strength Theories for Composite Materials,” J. Compos. Mater., Vol. 11, no. 4, pp. 366–377, 1977.
    [53] R. Pascu, “„COMPORTAREA ŞI CALCULUL ELEMENTELOR DIN ”,” p. 136, 2008.
    [54] J. Lee and G. L. Fenves, “Plastic-damage model for cyclic loading of concrete structures,” J. Eng. Mech., Vol. 124, no. 8, pp. 892–900, 1998.
    [55] P. Krause, D. P. Boyle, and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Adv. Geosci., Vol. 5, pp. 89–97, 2005.
    [56] A. Budipriyanto, A. L. Han, and H. T. Hu, “Bond-shear Behavior of FRP Rods as a Function of Attachment Configuration,” J. Adv. Civ. Environ. Eng., Vol. 1, no. 1, p. 9, 2018.
    [57] A. Han, B. S. Gan, and A. Budipriyanto, “Shear-bond behavior of fiber reinforced polymer (FRP) rods and sheets,” MATEC Web Conf., Vol. 195, pp. 1–7, 2018.
    [58] S. Tudjono, H. Ay Lie, A. Hidayat, and Purwanto, “Experimental Study on the Concrete Surface Preparation Influence to the Tensile and Shear Bond Strength of Synthetic Wraps,” Procedia Eng., Vol. 171, pp. 1116–1122, 2017.
    [59] M. Baena, L. Torres, A. Turon, and C. Barris, “Experimental study of bond behaviour between concrete and FRP bars using a pull-out test,” Compos. Part B Eng., Vol. 40, pp. 784–797, Dec.2009.
    [60] R. Aghlara, R. Abdullah, and M. M. Tahir, “Mapping full-field bond stress distribution on concrete using digital image correlation results,” J. Appl. Sci., Vol. 12, no. 21, pp. 2235–2243, 2012.
    [61] R. Capozucca, “Analysis of bond-slip effects in RC beams strengthened with NSM CFRP rods,” Compos. Struct., Vol. 102, pp. 110–123, 2013.
    [62] G. Barbieri, L. Biolzi, M. Bocciarelli, and S. Cattaneo, “Size and shape effect in the pull-out of FRP reinforcement from concrete,” Compos. Struct., Vol. 143, pp. 395–417, 2016.
    [63] M. Caro, Y. Jemaa, S. Dirar, and A. Quinn, “Bond performance of deep embedment FRP bars epoxy-bonded into concrete,” Eng. Struct., Vol. 147, pp. 448–457, 2017.
    [64] L. Biolzi, C. Ghittoni, R. Fedele, and G. Rosati, “Experimental and theoretical issues in FRP-concrete bonding,” Constr. Build. Mater., Vol. 41, pp. 182–190, Apr.2013.
    [65] ACI 440.2R-08, Guide for the design and construction of concrete reinforced with FRP bars,. 2008.
    [66] ACI 318-14, ACI 318-14 - Building Code Requirements for Structural Concrete. 2014.
    [67] A. Task Committee on Finite Element Analysis of Reinforced Concrete Structures of the Structural Division Committee on Concrete and Masonry Structures, “State-of-the-Art Report on Finite Element Analysis of Reinforced Concrete.” ASCE, pp. 553–553, 1982.
    [68] A. Raza, Q. U. Z. Khan, and A. Ahmad, “Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in abaqus,” Adv. Civ. Eng., Vol. 2019, 2019.
    [69] A. Peiris and I. Harik, “Design and Construction of CFRP Rod Panel Retrofit for Impacted RC Bridge Girders,” J. Compos. Sci., Vol. 2, no. 3, p. 40, Jul.2018.
    [70] N. T. K. Al-Saadi, A. Mohammed, R. Al-Mahaidi, and J. Sanjayan, “A state-of-the-art review: Near-surface mounted FRP composites for reinforced concrete structures,” Construction and Building Materials, Vol. 209. Elsevier Ltd, pp. 748–769, Jun.10, 2019.
    [71] C. A. Sapulete, A. L. Han, and S. Tudjono, “Experimental Study the Effect of FRP Rods and Wrap as a Flexural Strengthening on the RC Beams.,” 4th Int. Conf. Civ. Struct. Eng. 2019 (ICCSE 2019), Phuket, Thailand, 14-16 June 2019., 2019.
    [72] S. Tudjono, H. A. Lie, and B. A. Hidayat, “An experimental study to the influence of fiber reinforced polymer (FRP) confinement on beams subjected to bending and shear,” Procedia Eng., Vol. 125, pp. 1070–1075, 2015.
    [73] S.Tudjono, H. A. Lie, and B. S. Gan, “An integrated system for enhancing flexural members’ capacity via combinations of the fiber reinforced plastic use, retrofitting, and surface treatment techniques,” Int. J. Technol., Vol. 9, no. 1, pp. 5–15, 2018.
    [74] “混凝土結構設計規範修正規定 總 則,” 2019.
    [75] L. S. Hsu and C. -T. T. Hsu, “Complete stress — strain behaviour of high-strength concrete under compression,” Mag. Concr. Res., Vol. 46, no. 169, pp. 301–312, Dec.1994.
    [76] W. Liu, M. X, and Z. Chen, “Parameters Calibration and Verification of Concrete Damage Plasticity Model of Abaqus.” 2014.
    [77] Simulia, “Abaqus Technology Brief Projectile Impact on a Carbon Fiber Reinforced Plate,” no. April, pp. 1–5, 2007.
    [78] Dassault Systèmes Simulia, “Abaqus CAE User’s Manual (6.12),” Manuals, p. 1174, 2012.
    [79] C. M. Huang, “Nonlinear Finite Element Analysis of RC Bridge Structures Strengthened by Composite Materials under the Soil-Pile Interaction,” National Cheng Kung University, 2019.

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE